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Preface

There are good reasons why the subject of electric power engineering, after
many years of neglect, is making a comeback in the undergraduate curriculum
of many electrical engineering departments. The most obvious is the current
public awareness of the ‘“‘energy crisis.” More fundamental is the concern with
social responsibility among college students in general and engineering students
in particular. After all, electric power remains one of the cornerstones of our
civilization, and the well-publicized problems of ecology, economy, safety,
dependability and natural resources management pose ever-growing challenges to
the best minds in the engineering community.

Before an engineer can successfully involve himself in such problems, he must
first be familiar with the main components of electric power systems. This text-
book will assist him in acquiring the necessary familiarity. The course for which
this book is mainly intended can be taken by any student who has had some cir-
cuit analysis (using discrete elements, and including sinusoidal steady state) and
elementary electromagnetic field theory. Most students taking the course will
be in their junior or senior years. Once the course is completed, students may
decide to go more deeply into the design and operation of these components
and study them on a more advanced level, or they may direct their attention to
the problems of the system itself, problems which are only hinted at briefly at
various points herein.

Quite a few of the subjects covered here have been known and described by
earlier writers. In fact, the older textbook literature in this field constitutes a
valuable heritage. Nevertheless, and contrary to widespread belief, there also
have been great changes in the practice of electric power engineering in recent
years. Moreover, the electrical engineering students for whom this text is largely
written bring a changed background of prerequisite training and knowledge to
this study. All these changes call for a completely fresh start, not just a patch-
work of adjustments and insertions to “update’’ obsolete treatments.

The authors, who have devoted half a lifetime to the teaching of this subject,
have given much thought to the changing scene in electric power engineering and
to the changing needs of their students. Some of the principles used in writing
this text are given below.

a. To be at the right level for its readers, a textbook must be understandable
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vi PREFACE

to less-gifted students and yet be challenging enough to hold the interest of
top-rated students.

b. An intelligent reader wants more than mere facts. He asks for explanations
of such facts, for the logic behind them and the connections between them. A
textbook should satisfy and encourage this attitude as much as possible.

c. Beware of time-honored traditions! It is true that many such traditions have
earned respect because of their excellence, but many faulty explanations and
illogical sequences have been perpetuated through generations of textbook
authors. On the whole, it may be said that the more widely accepted the treat-
ment of a subject, the more it should be scrutinized with suspicion before it is
adopted.

d. In the past 10 to 20 years, the most significant change affecting electric
power engineering has been the ascendency of electronic controls. This topic
must be integrated into the text, appearing wherever it is pertinent, not just in
an added chapter or appendix.

e. On the other hand, the digital computer, while having revolutionized the
actual operation of power systems, as well as the design of their components,
has only a minor influence on the basic theory and the understanding of these
components.

f. The basic aim of this book is to impart to the reader an understanding of
practical devices, not to give him additional practice in the use of the mathemat-
ical tools of linear systems theory or to preempt the teaching of related subjects
such as control systems engineering.

The first two chapters are intended as an introduction, to clarify the purpose
of the devices to be studied and the laws of nature on which their operation is
based. As far as the further choice and sequence of subjects is concerned,
magnetic circuits are a necessary prerequisite to all the devices to be studied,
and among those, it is logical and helpful to analyze transformers before rotating
machines. Two chapters (7 and 8) serve as a transition from transformers to
motional devices. All the basic types of motors and generators are covered,
with two or more chapters devoted to the more important ones. At the end of
most chapters, there are sections containing illustrative examples and practice
problems. Answers to problems are given at the end of the book.

Our thanks are due to the Department of Electrical and Computer Engineering
of the University of Massuchusetts in Amherst, for making the facilities of the
University available.

ROBERT STEIN
WiLLiam T. HunT, JR.
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1
The Electric Power System

1-1 ELECTRIC POWER AND ITS COMPETITORS

For better or for worse, civilization is a goddess to whom we all pay tribute, and
foremost among our payments is the use of electric power.

In engineering, power is a well-defined physical quantity (energy per unit of
time) whose use is by no means restricted to its electric form. In fact, the power
required for industrial processes is mostly mechanical or chemical; domestic
power needs are largely for light and mechanical power; many means of trans-
portation use some form of heat power. What distinguishes the electric form of
power from all others is the fact that any form of power can be (and usually is)
obtained by conversion from the electric form. (The only major exception is the
familiar motor vehicle powered by an internal combustion engine where electric
power is used in an auxiliary capacity only.)

So electric power has a predominant position among the various forms of
power. The main reason is that all the enormous quantities of power needed for
industry, homes, transportation, etc. can be centrally generated, transmitted over
almost unlimited distances, and distributed over any desired area, all in electric
form. At the location where it is to be used, power is converted into the desired
form.

All the statements made above concerning power could equally well have been
made in terms of energy. This makes it all the more imperative to observe the
distinction between these two terms in the many cases when they are not inter-
changeable. For instance, a power plant could have a practically unlimited
supply of energy and yet be unable to satisfy its consumers’ demand for power,
possibly due to one or more of its generators being under repair. Then again,
a power plant fully capable of meeting all the power demands of its consumers
could be short of energy if its fuel stocks were running too low.

1-2 POWER SYSTEM COMPONENTS

An electric power system consists basically of devices for generating, trans-
mitting, distributing, and consuming electric power. The term generating means
obtaining electric power by conversion from some other form of power. Simi-
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larly, consuming actually means converting electric power into some other
form.

For the purpose of generating electric power, there is one almost unchallenged
device: the synchronous generator, also called alternator (because its output is
a-c power). It is a rotating machine, and a typical example of the kind of elec-
tromagnetic devices to whose study this book is devoted. There are other kinds
of electromagnetic generators, which are only occasionally used, and there are
other devices whose output is electric power, e.g., primary batteries, fuel cells,
and so-called “direct” energy converters, but they have not (or at least not yet)
been found suitable for major power systems.

The input power of an electromagnetic generator (synchronous or otherwise)
is mechanical. The generator is driven by its prime mover. Any machine that
produces mechanical power can be used as a prime mover. The most important
one (in terms of power generated) is the steam turbine, which converts the heat
power of steam into mechanical power. The steam in turn may be obtained by
heating water in a boiler, a process that requires burning a “fossil”’ fuel like oil,
gas, or coal. As an alternative, steam may be obtained by nuclear fission (or
perhaps, at some time in the future, by nuclear fusion) in an atomic reactor and
heat exchanger. In either case, it takes several steps to convert the chemical or
nuclear energy stored in the fuel into electric energy.

Other important examples of prime movers are gas turbines and internal
combustion engines (gasoline or Diesel), which convert the chemical power of
their fuel directly into mechanical power, but which have been found more
suitable for comparatively small, often auxiliary or portable, power systems.
Finally, the power of moving water is used in hydroelectric power plants in which
the prime movers are waterwheels. All these major ways of obtaining electric
power are summarized schematically in Fig. 1-1.

It is worth noting that of all the prime sources of power discussed above, water
power is the only one whose use does not constitute depletion of a natural re-
source. To be efficient, however, hydroelectric power plants usually require
building a dam to store water, and this often encounters the rigorous opposition
of conservationists. Even so, most available sites for the use of water power have
already been utilized, at least on the North American continent. After all,
hydroelectric power plants work only where there is enough water and enough
difference of altitude, which means, broadly speaking, where there are mountains.

Thermal power plants, however, can be built anywhere, and the actual choice
of asite is determined by the conflicting pressures of economy (where is the fuel
least expensive?) and ecology (where are air and water pollution least objection-
able?). For the case of nuclear power plants, there are additional problems of
radiation leakage, radioactive waste disposal, and safety.
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Fig. 1-1. How most electric power is obtained.

So much about the generation of power. The many devices consuming electric
power are referred to as the load of the power system. For the purposes of this
book, the only such devices of interest are those that convert electric power into
mechanical power, the electric motors. Their operation constitutes a reversal of
that of the generators; as a matter of fact, all electric generators can also operate
as motors and vice versa, at least in principle. But even though motors are the
same devices as generators, their different mode of operation raises different
problems that require much additional study.

1-3 THE NEED FOR TRANSFORMERS

The transmission and distribution of electric power might be thought to require
nothing but a suitable number of conducting wires, but there is more to it than
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that. The main problem is caused by the resistance of these wires.* It is useful
to let a simple numerical example illustrate the orders of magnitude involved.

Let there be a load rated at 500 kilowatts (kw), barely enough for a small
village, at a voltage of 250 volts (v). This little power system might be a d-c
system, or a single-phase a-c system with an ideal power factor of unity. Either
way, the current needed for this load is

I= f/{f = %’800 = 2000 amperes (amp)

Now assume the power plant is located only 10 kilometers (km) or about 6 miles
(mi) away from the load. To keep the resistance of the transmission wires low,
choose the best material—copper, having a resistivity of p =1.73 X 108 ohm-
meters (2m)—and an extremely large cross-sectional area 4 = 10 square centi-
meters (cm?) or about 1.6 square inches (in.2). The resistance of this two-wire
transmission line is

pl_ 173X 108X 20X 10°
A 10X 1074

=0.346 Q

and the full-load power loss in the transmission line is
P=RI?*=0.346 (2000) = 1.38 X 10° watts (w)

That is 2.76 times the power to be transmitted to the load! The generator must
produce 1880 kw, of which 1380 are lost on their way to the load. Rather than
sending power to the load efficiently, this generator would serve mainly to heat
the countryside. An attempt to reduce this atrocious waste of power by further
increasing the wire size would use enormous amounts of copper, making the en-
tire project economically hopeless. And that for only a small load at a fairly
short distance!

The only solution lies, as many readers may already know, in the use of higher
transmission voltages. For instance, raising the voltage by a factor of 10 would
reduce the current by the same factor, and thereby reduce the power loss by a
factor of 100. Actually, transmission voltages for major power systems have
climbed through the years up to as much as 750,000 v, and they will surely go
even higher as progress is made in tackling such problems as insulation, corona,
radio interference, etc. In this way, loads of over 10° w; that is 1000 megawatts
(Mw), or 1 million kw can be transmitted over distances of many hundreds of
miles without excessive power losses.

*The idea of using ‘“‘superconducting” wires, i.e., wires cooled down to extremely low
temperatures, should not be dismissed offhand as impractical or utopian. Serious feasibility
studies have been made, although actual application of the idea still seems far away.
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To operate loads at such high voltages is out of the question. In fact, consid-
erations of insulation, spacing, and safety limit voltages for homes, offices, etc.
to only a few hundred volts. Here again, there is only one way out: electric
power must be transmitted at “high” voltages and consumed at “low” voltages.
Transformers, which convert electric power between transmission and consump-
tion with high efficiency, are indispensable to feasible power systems as we know
them. It so happens that transformers are also electromagnetic devices. Their
operation is simpler than that of generators and motors, and its study is a useful
and even necessary prerequisite to the study of those machines.

The role of transformers in power systems is not limited to that of an inter-
mediary between transmission lines and loads. For one thing, generators cannot
be built (at least not economically) at voltages as high as those of the transmis-
sion lines. Transformers are used to “step up” the voltage between generator
and transmission line, just as they are used to *“step down” the voltage between
transmission line and load. Furthermore, modern power systems consist of
many generators, transmission lines, distribution networks, and loads, each
of which may operate at its own most suitable voltage. Transformers are used to
interconnect all parts of such a power system.

1-4 A WORD ABOUT RELIABILITY

Nothing man-made is perfect, but electric power systems have to come very close
to perfection to do their job. Such is our dependence on an everready power
supply that a power failure of more than the shortest duration has a catastrophic
impact on our lives. (Readers living in the north-eastern United States and old
enough to remember a certain night in November 1965 can testify to that ob-
servation.) Considering how many components built and operated by human
beings are exposed to hazards such as extreme weather conditions, accidents,
aging, and human error, the overall performance of our major power systems
through the years must be called miraculous.

The major weapon used by power companies to maintain the reliability of
their service is a certain amount of redundancy. Several generators always share
their load and, thereby, are able to maintain service if one of them should break
down. The same principle applies to transformers, transmission lines, and even
distribution leads. Whenever any component suffers a failure, there should
always be another way by which the power can be routed to every load.

As an extension of that idea, major power systems are not only integrated but
also interconnected. Not only can faults be bypassed within a system; the vari-
ous systems have also built connections so that power can be transmitted from
one system to another. One system whose generators are temporarily unable to
supply all its loads (e.g., due to a breakdown of one generator) can borrow or
buy energy from another system.
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It is true that such interconnections, intended to avoid blackouts, could actu-
ally have the opposite effect and spread them over wider areas, as in the above-
mentioned 1965 event, but there is general agreement that, on the whole, inter-
connections do more good than harm. The situation is comparable to that of a
group of mountain climbers who are tied to each other by a rope. The purpose
of the rope is to save a member of the group who might slip or fall. Even
though it has happened occasionally that one member of such a group pulled
the others down to disaster, mountaineers continue to rely on ropes for their
safety.

It should not be assumed that redundancy and interconnection by themselves
are sufficient to maintain the entire power system in operation. There must also
be elaborate sets of protective devices like lightning-arresters, as well as constant
monitoring, to detect signs of component breakdowns, and circuit-breakers to
open and close connections without shutting down the rest of the system.

1-5 THE QUALITY OF SERVICE

The term maintaining service, as used in the previous section, must include main-
taining the waveshape of the voltage. Since voltages in power systems are prac-
tically all sinusoidal, what must be maintained are the magnitude and the fre-
quency of the voltage.

It should be kept well in mind that basically all loads in a power system are
connected in parallel to each other. The familiar power outlets in our rooms are
pairs of “hot” terminals to which power-consuming devices can be connected.
Therefore, the term load may mean, in a quantitative sense, the power or the
current drawn from the terminals, but never the voltage. For instance, a genera-
tor is said to operate at no-load when the terminals are open and the current is
zero.*

The fact that voltages have to be adjusted in order to be kept constant is prob-
ably well known to many readers. The resistance (and even more the inductive
reactance) of a transmission line alone causes a voltage drop between generator
and load; the magnitude of that drop depends on the current. Similarly, the
output voltages of generators and transformers depend on the currents they
carry, because of their own resistances and reactances. In our study of generators
and transformers, we shall be very much concerned with the regulation of these
devices, i.e., with the amounts by which their voltages change when their loads
change.

*This all-parallel arrangement of power systems is the one universally chosen, but is is not
the only possible one. In the early days of electric power engineering, there were experi-
mental all-series systems in which all (d-c) generators and loads were connected in series. In
such a system, load must mean voltage, and no-load means short-circuit.
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To maintain the magnitude and frequency of voltages in the face of constantly
changing loads is the main task in the operation of a power system. It involves
the use of computers and automatic control systems, and it remains the subject
of continuous study and search for improvement. A basic knowledge of the
properties of synchronous generators and transformers is a necessary first step
toward an understanding of such problems.

1-6 POWER LOSSES

Since the devices we shall study are all power converters, it makes sense to refer
to their inputs and outputs in terms of power. It would be unrealistic to expect
the output power of any such device to equal its input power. Inevitably, and
for specific reasons we shall study later, the operation of all electromagnetic
devices is accompanied by the loss of some power

PlosszPi —Pout (1'1)

From the economic point of view, what matters is not so much the amount of
power lost (in watts or kilowatts) as its relation to the power converted. This
leads to the definition of efficiency as a dimensionless quantity

_ P out
n=p (1-2)
which can also be expressed in terms of input and losses
_ Pin —Pross _ . Pross
=7 =1 ?, (1-3)
or, generally more usefully, in terms of output and losses
P out P loss
=——out g "Joss 1-4
" Pout+Plos Pout+Ploss ( )

In both Egs. (1-3) and (1-4), the last expression is the most significant because it
shows how the relative losses are subtracted from the ideal efficiency of unity.
The significance of power losses goes far beyond their economic aspect. All
power “lost” is actually converted into heat,* and is thus lost for the purpose of
the device. Now heat must inevitably raise the temperature of the object in which
it is generated unless it can be dissipated, i.e., removed from that object. In the
case of electromagnetic devices, there is a limit beyond which the temperature

*There is also a power loss by electromagnetic radiation, due to changing electric and
magnetic fields, but this is negligibly small at the comparatively low frequencies of power
systems.
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Ploss J

out

Fig. 1-2. Power losses.

must never rise. That is so because at high temperatures, all insulating materials
deteriorate (first, their insulation resistance decreases and eventually they burn).

The dissipation of heat occurs naturally by three independent mechanisms:
heat radiation, heat conduction, and heat convection; the last term means heat
removal by the motion of the surrounding medium, e g., air. The rate of heat re-
moval by all three mechanisms depends on the surface area of the heated object
and on the temperature difference between that object and the surrounding space
(more strictly speaking, on the temperature gradient at the surface). The rate
of heat convection in particular can be artificially increased by aiding the motion
of the surrounding medium (e.g., by means of a fan), or by using a cooling
medium, like water or oil, in place of air.

What happens then is that, when the device is turned on (made to convert
power), the power losses cause its temperature to go up until it is hot enough
to dissipate exactly as much heat as it generates. Thus a steady-state tempera-
ture (for a constant load) is reached asymptotically, similar to the steady-state
current in an RL or RC circuit under d-c excitation, except that thermal time
constants are generally reckoned in minutes, in contrast to the fractions of a
second usually encountered as electric time constants.

As might be expected (and to be confirmed in later chapters), the magnitude
of the power loss in an electromagnetic device depends on its output. Figure 1-2
shows a typical example of this relationship. As the load increases, more heat is
generated, and the temperature rises. It follows that there is a certain amount
of output power that leads to a steady-state temperature equal to the permissible
limit. That is the rated power of the device, the power given on its nameplate.

The rated power of an electromagnetic device is thus seen to be determined by
the power losses. It is not the maximum power that the device can deliver.
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(Other energy-converting devices like automobile engines are often rated on such
a basis.) For instance, an electric motor can be overloaded,i..,it can be forced
to deliver more than its rated output. If this is done (by an amount exceeding
the small safety margin), the motor will eventually overheat, i.e., its insulation
will deteriorate or even break down. It is, however, quite all right to overload a
motor for a comparatively short time and then to operate it at reduced or zero
output to let it cool off again. Such load cycles can be repeated indefinitely,
and some motors intended for such use are actually given intermittent-duty
ratings, which are higher than their steady-state ratings.



2
Faraday’s Induction Law

21 A LITTLE HISTORY

Since all engineering devices discussed in this book (as well as many other devices
of electrical engineering) are essentially based on the law of electromagnetic
induction, it is appropriate to begin their study with a brief glance at the dis-
covery of this fundamental law of nature.

Our story begins in 1819 when the Danish physicist Oerstedt found that the
hitherto independently known phenomena of electricity and magnetism were
related to each other. He was the first to show that an electric charge could
produce magnetic effects, provided only that charge was in motion; in other
words, that an electric current produces a magnetic field. Soon afterward,
Ampere found a general mathematical formulation of this observation.

Their contemporary, Faraday, across the English Channel, thought it strange
that this relationship between electricity and magnetism should be so one-sided.
His intuition told him that it should also be possible to “produce electricity out
of magnetism.” After years of trying, he discovered, in 1831, the way to do it:
the magnetic field must undergo a change in order to produce an electric effect.

The laws named after Ampere and Faraday have remained the two corner-
stones of the science of electromagnetism. They are expressed in the full power
of their basic simplicity and the beauty of their symmetry among Maxwell’s
equations.

22 FLUX AND FLUX LINKAGES

The reader should not expect the ideas discussed in this section (or even in the
whole chapter) to be entirely new to him or her. It is always good to start with
some familiar (though possibly not-too-well remembered) concepts and to use
them as the first steps leading gradually into the realm of the unknown.

The magnetic quantity whose rate of change is responsible for an induced
voltage (Faraday’s electric effect) is called the magnetic flux. It may be defined
mathematically in terms of the magnetic vector field quantity called the mag-
netic induction or (better) the magnetic flux density ® by the equation

10
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¢=L $-d@ (2-1)

where A is a bounded surface consisting of infinitesimal area elements d@.

The whole concept is much more easily visualized if we can choose a surface
A consisting of elements perpendicular to the flux density vector. In this case,
we don’t need vector notation and the dot product, and the equation becomes

o= J,, BdA (22)

A still simpler case we shall encounter frequently occurs when the flux distribu-
tion is uniform, i.e., when there is a region in space where the flux density has
the same direction and the same magnitude at every point. Then we can choose
a plane surface A, and the equation reads

¢=B4, (23)

In any case, any mention of a flux implies the choice of surface 4 (or 4,).
The main importance of a flux lies in the fact, found by Faraday, that a change
of this flux results in an induced voltage around the boundary of its surface. It
follows that, in order to define a certain flux, one needs to choose not the sur-
face but only its boundary line. In other words, the choice of any surface
bounded by the same closed line yields the same flux.

Another concept we owe to the genius of Faraday is the description of a vector
field by its “lines of force.” In addition to indicating the direction of the field
vector at any point of space, these lines also indicate its magnitude by their
density. A flux is proportional to the number of lines crossing its surface or
linking its boundary line. The term “linking” aptly describes the relationship
between the closed boundary line and the line of flux, comparing them to two
links of a chain. (The reader knows that the lines of flux density must be closed,
i.e., without beginning or end.)

As to tlrat induced voltage, its magnitude is

_4¢
e=— 2-9)

while its sign (+ or -) depends on what may have been chosen as the positive
direction of e and as the positive value of ¢.

In place of our abstract boundary line, we can visualize a wire of negligibly
small cross-sectional area, made of electrically conducting material. If this
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conducting loop links a magnetic flux, and if this flux is changing, then there
will be an induced voltage and, therefore, a current in the conductor.

We shall study engineering devices that make use of this phenomenon. It can
be expected that such devices will be better if larger voltages can be induced. At
any rate, it has been found that voltages induced in a single loop are rarely large
enough for their purposes. But, if we can wind several turns of our conducting
wire next to each other to form a coil, then there is voltage according to Eq.
(2-4) induced in each turn, and, since the coil consists of its turns connected in
series, the voltage induced in a coil of NV turns is

d¢
e=N ar (2-5)

It was tacitly assumed that all N turns are located so close to each other that
they all link the same flux ¢. Practical devices to be studied in this book mostly
have coils consisting of many hundreds or even thousands of turns, and in many
cases the turns link practically the same flux. Figure 2-1 shows a sketch of a coil
of three turns linking a flux (shown as a bundle of lines). Note that the highest
and the lowest of the lines drawn do not belong to the flux linked by the coil.

A slight simplification arises from the definition of flux linkages

A=Ng (2-6)
Since MV is a constant, a substitution of Eq. (2-6) into Eq. (2.5) results in
dx
e= d_t (2-7)

which is useful in circuit analysis as the dual or counterpart of the familiar equa-
tion defining the electric current i as the derivative of the charge g.

Fig. 2-1. A coil in a magnetic field.
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Fig. 2-2. lllustrating motional voltages.

2-3 TRANSFORMER VOLTAGES AND MOTIONAL VOLTAGES

The question arises: what could cause a flux to change? There are two distinct
possibilities to be considered: a changing electric current and mechanical motion.

To begin with, magnetic fields in engineering devices are mostly produced by
electric currents, the rarer alternative being the use of permanent magnets. Now,
if an electric current changes, the change of the magnetic flux produced by this
current must result in voltages being induced in any circuit that links any part of
this flux. Such voltages account for the operation of transformers (see Chap. 5)
and are known, therefore, as transformer voltages.

On the other hand, mechanical motion can change flux linkages in a variety of
ways. Figure 2-2 illustrates one of the simplest cases. It shows a coil similar to
that of Fig. 2-1, and a bar magnet with poles marked N and S (for north and
south) at its left and right ends. (This could be either a permanent magnet, or
an electromagnet whose “exciting” coil is not shown in the figure.) In the posi-
tion shown, the coil links most if not all of the flux of the magnet. Butif the
magnet is moved far enough to the right, some of its lines of flux will bypass
the coil. So the flux linked by the coil will change, and there must be a voltage
induced in the coil during the motion. Such a voltage depends on the speed of
the motion and is, therefore, called a speed voltage, or motional voltage. We
shall see that such voltages form the basis of all electric motors and generators.

2-4 SELF- AND MUTUAL INDUCTANCE REVISITED

If we exclude permanent magnets from our consideration, every magnetic field
is produced by electric currents, and its strength depends on the values of the
currents that produced it. In linear circuit analysis, a science with which the
reader must have some familiarity, the relation between current and flux is
assumed to be one of strict proportionality.

Thus, if there is only one current path carrying i(¢) amperes at the time ¢, the
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flux linkages of this path are assumed to be

A=Li (2-8)
If the current changes, there is a transformer voltage induced, and its value is
found by substituting Eq. (2-8) into Eq. (2-7):

di
e=L a5 29

so that the constant of proportionality introduced by Eq. (2-8) turns out to be
the familiar (self)-inductance

L2y
l

=N 7 (2-10)
In the more general case of several current paths (branches), linear circuit

analysis assumes that the current in branch k contributes to the flux linkages of
branch / the amount

Aer =My iy (2-11)
Now, if the current i;, changes, the transformer voltage induced in branch / is
dx di
e =g =M = (2-12)
and we recognize the mutual inductance between branches k and /
A
My =2 (2-13)
Ix

So we see that the reader has long been quite familiar with transformer voltages.

The trouble is that, with the kind of electromagnetic devices to be studied in
this book, the assumption of linearity does not hold, as we shall see in the next
chapter. We shall be constantly faced with the need to choose either linear
approximations or other approaches that, although far more accurate and also
more physically meaningful, deny us the use of the many powerful and often
convenient tools of linear algebra.

If the idea of circuit parameters like L and M is to be extended to nonlinear
circuits, these parameters must not be constants but functions of all currents.
Furthermore, if motional voltages are to be introduced into circuit analysis,
time-varying parameters L and M must be used.



3
Magnetic Circuits

3-1 AMPERE'S LAW

There are several ways to express Ampére’s law, the relation between a magnetic
field and the electric current or currents producing it. The following equation
will turn out to be the most significant one:

fn cdl=Yi G-

H is the field intensity vector. The left side of the equation suggests that we
choose an arbitrary closed line consisting of an infinite number of infinitesimal
line elements dl and form the line integral of X along this line. The right side of
the equation is the algebraic sum of all electric currents whose paths link the
chosen line.

This equation can be written in a much simpler and more easily visualized form
(without vector notation and dot product) if the integration path is chosen to
have the direction of the field intensity at every point of its course; in other
words, if the integration path coincides with a line of force. In that case,

f Hdl=Y i (32)
In addition, if the field is uniform, the equation becomes further simplified:
HI=Yi (3-3)

The simplest example is a single current in a straight linear path and a circular
path of integration surrounding the current path at the distance (radius) r, as
sketched in Fig. 3-1. As the reader presumably knows, this chosen integration
path coincides with a line of force, and the field intensity has the same magni-
tude at every point of this path. Thus, Eq. 3-3 is applicable:

=i =1 .
HQ2nr)=i, or H a7 (3-4)

Much stronger fields are obtained by forming coils consisting of many turns
of conducting wire wound side by side. In that case the lines of force link all
turns of the coil, and the right side of Eq. 3-1 or 3-2 or 3-3 becomes the product

15
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Fig. 3-1. lllustrating Ampere’s law.

of i, the current, and N, the number of turns. This product is a significant
quantity in all electromagnetic devices, and it is given the symbol ¥ and the
name magnetomotive force (mmf for short).*

¥ =Ni (3-5)
The unit of §, the ampere-turn (At), is dimensionally the same as the ampere.

3-2 IRON CORES

The description of a magnetic field requires the use of two vector quantities,
the field intensity ¥ and the flux density 8. As we have seen in the previous
section, the field intensity is directly related to the current or currents producing
the field; on the other hand, we know that the effects of a magnetic field (me-
chanical forces or induced voltages, as described in the previous chapter) are
directly related to the flux density. The “constituent” relation between these
two vectors is

B=uK - (3-6)

where the permeability u (normally a scalar quantity) depends on the material.
If magnetic effects are to be increased, materials with larger values of u should
be used.

Most materials have practically the same permeability as free space:

to =41 X 1077 rationalized mks units'

But there is a distinct group of materials whose permeability exceeds that of free
space by several orders of magnitude. Iron and steel, the materials whose mag-
netic behavior is so obviously “special,” are the principal members of this group,

*We use the symbol ¥ although the mmf is not a vector quantity because the letters f and
F are already overworked (frequency, force, etc.)

TThe units of 3 and X are determined by their relations to electric quantities. By Eq. 2-4,
the unit of flux is a volt-second, and it is called a weber. Thus, the unit of flux density is a
weber per square meter. By Egs. 3-3 and 3-5, the unit of field intensity is an ampere-turn
per meter. These units are called rationalized, in contrast to other systems in which the
factor 4n appears in Egs. 3-1 through 3-5, and not in the value of uq.
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(others are nickel and many oxides and alloys of iron), and they account for the
name ferromagnetic materials ( ferrum is iron in Latin).

To use this property of ferromagnetic materials—namely, their high perme-
ability—for electromagnetic devices, the basic idea consists of winding coils
around iron cores, as shown schematically in Fig. 3-2, for instance, except that
instead of four turns, most devices have many hundreds or thousands of turns.

Let such a coil carry an electric current, and visualize the magnetic field in
terms of lines of force. All lines must link the coil, and, if we consider the
permeability of the surrounding space as negligible compared to that of the
core, all lines of flux density must be closed through the core. So the use of an
iron core results not only in a considerably larger flux, but it also forces the
lines of flux density to follow a prescribed path, comparable to the path a closed
electric conductor provides for an electric current. This analogy introduces the
concept of magnetic circuits in which a magnetic flux is seen as the counterpart
of an electric current. .

Figure 3-3 is a simplified redrawing of the core and coil of Fig. 3-2, which also
indicates the approximate path of the mean line of flux density. We visualize
the flux linking the coil as a bundle of such lines, and we use their average
density as the approximate value of the flux density throughout the core. This
permits us to use Eq. 2-3. So we write

¢

B= n (3-7)

where A is the cross-sectional area of the core. (Since this area is perpendicular
to the flux, the subscript p used in the original equation is omitted as unneces-
sary.) Next, we obtain the field intensity from Eq. 3-6

B

u (3-8)
where script letters have once again been replaced by ordinary italic capitals
to indicate a relation of magnitudes. This value of H is valid for every point
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Fig. 3-2. Core and coil. Fig. 3-3. Mean line of flux.
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along the mean line of flux so that we can use Eq. 3-3 to obtain
F=Hi (39

What we have accomplished by these three steps (the last three equations) is
to find the mmf required to produce a desired flux. We can also combine the
three steps and obtain

B !
=Hl===¢ — 3-10
F=H="1=¢ (3-10)

In the analogy between magnetic and electric circuits, the mmf is the counter-
part of the voltage (for which the old term electromotive force, or emf for short,
is still occasionally used). In that sense, Eq. 3-10 is the magnetic counterpart of
Ohm’s law, and the fraction on the right side of the equation is the counterpart
of resistance. It is given the symbol R and the name reluctance.

¥
= 3-11
2= (311)
For the case of a core with a uniform cross-section, it is
=L (3-12)
ud

The reader can see the perfect analogy to the expression for the resistance of a
cylindrical conductor (length I, cross-sectional area 4) where the conductivity
appears in place of the permeability. This should come as no surprise, since it is
the higher permeability of the core (compared to its surrounding space) that
forces the flux to follow a prescribed path, just as the high conductivity of a
metallic wire provides a prescribed path for the electric current.

Just as, in electric circuit analysis, it is often more convenient to use the
reciprocal of resistance (or of impedance), so the reciprocal of reluctance is a
useful quantity in the study of magnetic circuits. Its name is permeance and its
symbol is 9

92 (313)

There is nothing inaccurate in Egs. 3-11 and 3-13, which are actually nothing
but definitions. But any numerical calculation based on Egs. 3-7 and 39 can
only be an approximation, for several reasons. To begin with, we assumed that
the flux is strictly confined to the core as it would be if the permeability of the
core were an infinitely high multiple of that of the surrounding space. Actually,
the ratio of permeabilities is only of the order of 103, and we shall sometimes be
concerned with the existence of leakage fluxes, which are simply fluxes outside
the intended ferromagnetic path. The same consideration is valid for an electric
current in a conducter, but the ratio of conductivities (metallic conductor to
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[$9)

v

Fig. 3-4. Magnetization curve.

surrounding insulating material) is usually of the order of 10'® or even more,
which makes the concept of electric circuits a much better model of true con-
ditions than that of magnetic circuits. Furthermore, the use of a mean line and
the assumption of a uniform field within the core are clearly nothing but approx-
imations, especially with respect to the corners of the core. Again, the same
method is much more nearly correct for electric conductors, because their ratio
of length to cross-sectional area is normally much higher than the corresponding
ratio for magnetic cores.

Altogether, the whole concept of a circuit is never anything more than an
approximation, needed to circumvent the complexities of a rigorous application
of Maxwell’s equations to an engineering problem. Fortunately, magnetic circuit
calculations based on our simplifying assumptions have results with satisfactory
accuracy, and have proved to be useful in the study of electromagnetic devices.

3-3 SATURATION

Ferromagnetic materials are practically indispensable for the cores of most
electromagnetic devices, because of their high values of permeability. They have
other properties, however, that cause great complications in the study, design,
and operation of such devices.

The relation between field intensity and flux density can be obtained empiri-
cally, and, for all ferromagnetic materials, the nature of this relation is shown in
Fig. 3-4. One significant aspect of this curve is the shape of its upper part where
it becomes nearly horizontal. Once the flux density has been raised to a certain
value, it Becomes insensitive to further changes of the field intensity ; the material
is then said to be saturated. The curve is called the saturation curve or the
magnetization curve of the material.

We see that no single value of permeability can be assigned to such a material.
For instance, the permeability at point 2 in Fig. 3-4 is lower than at point 1.
The more the material is saturated beyond the ‘“knee” of the curve, the lower
the permeability becomes, and the more the advantage of using the material
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diminishes. The fact that the relation between B and H is nonlinear lies at the
root of many complications we shall encounter in our further studies.

The calculating procedures shown in the previous section remain correct. Still,
the use of Eq. 3-8 (or 3-6) would require that the appropriate value of u be
found first, from the magnetization curve of the material. Instead, it is simpler
to look up the values of H directly from that curve. Similarly, we can find the
flux produced by a given mmf in three steps: H =%/, look up the corresponding
value of B,and ¢ =BA.

Figure 3-5 is a set of magnetization curves for commercially used materials, for
use in illustrative examples and practice problems. The abscissa scale is logarith-
mic to cover a wider range of values.

3-4 SERIES MAGNETIC CIRCUITS

When a core does not have a uniform cross-section, it must be considered as con-
sisting of several parts, each with a different value of cross-sectional area 4,,4,,
etc. Application of Eq. 3-7 then yields several values of B, one for each part. To
each of these values, we can look up the corresponding value of H on the mag-
netization curve. But then, instead of using Eq. 39, we have to go back to
Ampére’s law (Eq. 3-2) and approximate the integral by the sum:

F=3 Hyly (3-14)
k

This equation is the magnetic counterpart of Kirchhoff’s voltage law, as can be
shown by the following series of substitutions:

By Ok
F=SH =S~k = =2 R0 3-15
; ktk ;#kf k ;”kAk k % k¥Yk ( )

Figure 3-6 shows a typical magnetic circuit consisting of four parts. Since the
flux is the same in each part, this core is considered a magnetic series circuit, and
the last equation can be written as

F=¢0> R =R¢ (3-16)
x

where the total reluctance appears logically as the sum of the reluctances of the
parts. Figure 3-7 shows the electric analog to the magnetic circuit of Fig. 3-6.
Notice, however, that the voltage source ¥ has to be inserted into the electric
circuit by cutting into that circuit. In the magnetic circuit, the corresponding
quantity ¥ requires only the presence of a current in the coil surrounding the
magnetic core.

How to solve a typical problem concerning such a core, is shown in Example
3-1.

While it is a straightforward procedure (accepting the limited accuracy inherent
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Fig. 3-6. Magnetic series circuit.

Fig. 3-7. Electric series circuit.

in the circuit concept) to find the mmf needed to produce a given flux in a series
magnetic circuit, the opposite problem, that of finding the flux produced by a
given mmf in such a core, leads to a peculiar difficulty that is a direct conse-
quence of the nonlinearity of the relation between B and H. There is simply no
straightforward way to break up the total mmf into its parts according to
Eq. 3-14, since the values of H and B (and, therefore, of u) are different for
each part of the magnetic circuit. The problem can be solved only by an itera-
tive process of trial and error, beginning with an arbitrary guess, as illustrated by
Example 3-2.

3-5 PARALLEL BRANCHES

Figure 3-8 shows a typical magnetic circuit of three parts where parts 2 and 3
are in parallel. Since lines of flux must be closed lines, and since all lines of flux
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Fig. 3-8. Magnetic circuit with parallel branches.

are inside the magnetic core, we can write
$1=0, t¢3 (3-17)

Figure 39 shows the electric circuit analog to the core of Fig. 3-8. Equation 3-17
is clearly the magnetic counterpart to Kirchhoff’s current law. Assumed positive
directions for fluxes are assigned arbitrarily, similar to branch currents in an
electric network.

In the three-legged core of Fig. 3-8, there are three different ways to apply
Ampére’s law (Eq. 3-1, approximated by Eq. 3-14), just as there are three loops
in the electric circuit of Fig. 3-9 to which Kirchhoff’s voltage law can be applied.
For instance, for the loop formed by legs 1 and 2,

Hlll +H212 =Ni, etc.

A typical sample of a numerical problem for such a core is given in Example 3-3.

In later chapters dealing with rotating machines, we shall encounter symmetri-
cal magnetic circuits. Figure 3-10 illustrates the principle. We can see that, in
that core,

$1 =03 =¢2/2, and Ni=¢; R; + 9, Ry = 02(R2 + R1/2)

where R,/2 is the combined reluctance of the two equal parallel legs.

Ry Ry
%A% 2%4%Y%
— ———
t].
Vv

_'l' izl §R2

Fig. 3-9. Electric circuit with parallel branches.
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Fig. 3-10. Symmetrical core.

N

3-6 AIR GAPS

Many electromagnetic devices have air gaps in the core to allow access to the
magnetic field or to permit motion of some parts of the magnetic circuit.
Figure 3-11 shows such a core. If the length [, of the air gap (i.e., the distance
across the gap) is short compared to the dimensions associated with the cross-
sectional area, then the lines of flux will be confined within a region that allows
us to apply our magnetic circuit assumptions. The fact that the lines of flux
tend to bulge in the air gap (a fact usually referred to as “fringing’) can be
taken into consideration in an empirical way, if necessary, by using an equivalent
cross-sectional area 4, , which slightly exceeds the area of the adjacent iron part,
so that the flux density in the air gap is assumed to be a little less than in these
iron parts. The reluctance of the air gap thereby becomes
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Fig. 3-11. Magnetic circuit with air gap.
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ly

”OAg
For a sample calculation, see Example 3-4.
Although the length of an air gap is usually no more than a tiny fraction of the

entire length of a magnetic circuit, the reluctance of such a gap is almost in-
variably a major portion, often even by far the largest one, of the total reluc-
tance. This is so because the permeability of air is so much smaller than the
permeability of the core material. For the same reason, the presence of an air
gap also tends to increase the relative importance of the leakage flux. This is
illustrated in Fig. 3-11 where the dotted lines are suggestive of the flux paths,
but should not be interpreted as the literal flux distribution.

R, = (3-18)

3-7 SATURATION CURVES

Magnetic circuit calculations are concerned with relations between mmfs and
fluxes, much as electric circuit calculations are all about voltages and currents.
If it were not for the curvature of the B versus H curve, fluxes would be pro-
portional to mmfs, and vice versa. As it is, this relation is characterized by
saturation.

In a uniform magnetic core (i.e., a magnetic circuit consisting of only one part),
we shall see that the ¢ versus F curve is identical with the B versus H curve, with
appropriate scale changes. If the mmf is that of a single coil, the curve can also
be changed by further scale changes into one describing the relation between
the flux linkages and the current in the coil.

Figure 3-12 demonstrates all these scale changes. The original curve (B versus
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Fig. 3-12. Scale changes.
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H) describes the property of the core material. For any point of the curve, the
ratio of ordinate over abscissa is the permeability u = B/H.

By multiplying the abscissa scale by the length of the mean line of flux, we
obtain the mmf § = HI. By multiplying the ordinate scale by the cross-sectional
area, we obtain the flux ¢ = BA. Now the curve describes the property of the
magnetic circuit. For any of its points, the ratio of ordinate over abscissa is
the permeance 9.

Furthermore, by dividing our new abscissa scale by the number of turns of the
coil wound around the core, we obtain the current i = §/N, and by multiplying
our new ordinate scale by the same number of turns, we obtain the flux linkages
A=¢N. This time, the curve describes the property of the electric circuit (of
the coil). For any of its points, the ratio of ordinate over abscissa is the induc-
tance L = A/i (see Eq. 2-10).*

We note that all these three ratios, u, #, and L, have values that depend on the
chosen point on the curve. In other words, since B is not proportional to H, ¢ is
not proportional to ¥, and A is not proportional to i. Or, due to the saturation
of the ferromagnetic material, both the magnetic circuit of the core and the
electric circuit of the coil are nonlinear. As was mentioned earlier, this fact of
nonlinearity will confront us throughout our studies of electromagnetic devices.

The conclusions just reached about the nonlinearity of magnetic and electric
circuits are not limited to the case of uniform cores. For a nonuniform core, the
¢ versus ¥ curve cannot be obtained by simple scale changes. What one has to
do, instead, for all parts in series, is to add the abscissas of their scale-changed
saturation curves (BA versus H1). Similarly, for a core with parallel branches,
the ordinates must be added. In each case, the result is a composite ¢ versus
¥ curve, which still looks very much like its component curves, nonlinear with
saturation.

It must be mentioned that the terms saturation curve or magnetization curve
can be applied to all such curves. In most cases, when such a term is used, it is
necessary to specify (unless it is clear from the context) what is meant by it: a
description of the behavior of a ferromagnetic material, or of a core made of
such a material, or of a coil wound around such a core. It should be pointed
out, furthermore, that the terms linear magnetic circuit, linear inductance, etc.,
as used in this book, are meant to refer to the case where the saturation curve is
a straight line through the origin.

*Strictly speaking, L = A/i is valid only for the case where the graph of A versusi isa
straight line through the origin. The general expression for L is found from e = dA/dt =
(d\/di) (dildr) = L di/dt; thus L = dA/di, which is the slope of the A versus i curve while the
ratio Afi can be used as an equivalent or average value of L for a current varying between
zero and i. The point remains: the inductance, whether defined as A/i or as dA/di, takes on
different values for different values of the current i.
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3-8 EXAMPLES
Example 3-1 (Section 3-4)

The core of Fig. E-3-1 is made of cast steel. The dimensions are given in centi-
meters. The depth into the page is 8 cm. The coil has 300 turns. Find the
current that produces a flux of 0.0064 webers.

The core is seen to be uniform except for the right leg, which is thinner. Thus,
the core is considered as a magnetic series circuit consisting of two parts whose
mean lengths /, and I, are indicated in the figure.

The pertinent dimensions are /; = (0.05 + 0.22 + 0.05) + 2(0.05+ 0.3+ 0.04) =
032+078=11m,1, =(005+022+0.05)=032m,4,=01X008=
0.008 m?,and 4, =0.08 X 0.08 = 0.0064 m?.

The following tabulation is useful. Fill in all the given data (flux, areas, and
lengths), and proceed from left to right until all quantities are known.

Part  ¢(webers) A(m?)  B(webers/m?) H(At/m) I(m) HI(At)

1 0.0064 0.008 0.8 620 1.1 682
2 0.0064 0.0064 10 900 032 288
970

By way of explanation, here are the computations used for line 1 of the
tabulation:

B, = ¢;/A, =0.0064/0.008 = 0.8 webers/m?,
H, is then found from the graph (Fig. 3-5) for cast steel,
Hl; =620 X 1.1 =682 At.
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Fig. E-3-1. Core of Example 3-1.
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The same procedure is used in line 2. The result is 7=NI/N = Z(HI)/N =
970/300 = 3.233 amp.

Familiarity with this procedure will permit computing and entering results in
the tabulation without writing out all details. This will result in some saving of
writing, as well as conveniently summarizing all quantities that pertain to a mag-
netic circuit problem.

Example 3-2 (Section 3-4)

For the core of the previous example, find the flux produced by an mmf of
2000 At.

This is a typical problem to be solved by trial and error. The question is how
to make the first guess. It should be assumed that the previous problem has not
been solved before; otherwise, it would already be known that the result must
be substantially higher than 0.0064 webers.

Ignoring the solution of Example 3-1, however, leaves even the order of mag-
nitude of the result completely unknown. Instead of making a “wild” first
guess of ¢, it is preferable to guess at a value of (H?), or (H1),, since it is known
that each of them must be less than 2000 At.

The following procedure is based on a first guess of (H!), = 1000 At. Use the
tabulation introduced for the previous example, and enter the known dimen-
sions and the first guess in their proper places. Then follow line 1 from right
to left.

Part ¢ A B H l Hl
1 0.008 0.008 1.0 909 1.1 1000
2 0.008 0.0064 1.25 1600 0.32 512

1512

Thus, Hy = (H1),/l; =1000/1.1 =909 At. Find B, from the curve for cast
steel, and get ¢ =By 4, = 1.0 X 0.008 = 0.008 webers. Enter this result in line 2,
and follow it from left to right, leading to (H1), = 512 At. Since the total mmf
came out lower than the given value of 2000 At, the first guess must have been
too low.

Repeat the procedure with, say, (HI); = 1500 At.

Part ¢ A B H l Hi
1 0.00944  0.008 1.18 1364 11 1500
2 0.00944  0.0064 1475 3200 0.32 1024

2524

This time, the guess was too high. Try one in between, perhaps (HI), = 1250 At.
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Fig. E-3-2. Saturation curve.
Part ¢ A B H l Hl
1 0.00888 0.008 1.11 1136 1.1 1250
2 0.00888 0.0064 1.39 2400 0.32 768

2018

Clearly, this can be repeated to any extent of accuracy desired. In most cases,
a result like that obtained from the third guess in this example would be con-
sidered close enough.

It is of some interest to plot the results of all guesses (plus that of Example 3-1)
to obtain the composite curve of ¢ versus §. (See Section 3-7.) This is done in
Fig. E-3-2. Note the pronounced saturation for high values of ¥.

Example 3-3 (Section 3-5)

The three-leg magnetic circuit shown in Fig. 3-8 is made of cast steel and has
effective dimensions as shown in the following table:

Part  A(m?) I(m)
1 left 00090 0.56

2 center 0.0032 026
3right 00045 0.51

The coil has 300 turns. Find the value of current that will make the flux in leg 3
be 0.005 weber.
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Part ) A B H l HI
1 0.00935 0.009 1.04 980 0.56 548
2 0.00435 0.0032 1.36 2200 0.26 571
3 0.005 0.0045 1.11 1120 0.51 571

Since ¢3 is given, start there; complete line 3 from left to right, leading to the
result (H1); =571 At. Since legs 2 and 3 are in parallel, this is also the value of
(HI),. Starting with this value, complete line 2 from right to left. Next, com-
pute ¢; = ¢, + ¢3 = 0.00435 + 0.005 = 0.00935 weber. Beginning with this
value, complete line 1 from left to right. Then, obtain i from Ampére’s law Ni =
(Hl), +(HI), =548 +571=1119 At and i = 1119/300 = 3.73 amp.

Example 3-4 (Section 3-6)

Return to the core of Fig. E-3-1, but alter it by cutting an air gap 0.1 cm long
into the right-side leg. Find the current needed to produce a flux of 0.0064
weber. Neglect leakage and fringing.

Part 1) A B H ! Hl
1 0.0064 0.008 0.8 620 1.1 682
2 0.0064 0.0064 1 900 032 288
Gap 0.0064 0.0064 1 796,000 0.001 796
1766

Since fringing is to be neglected, the cross-sectional area for the air gap is the
same as for Part 2 of the magnetic circuit. The length of Part 2 could be cor-
rected to 0.319 m without making any appreciable difference. The whole pro-
cedure is the same as in Example 3-1, except only that the value of H for the
air gap is not found from a curve, but rather by dividing the value of B by ug =
47 X 107, The result of the problem is 1766 At.

3-9 PROBLEMS

3-1. Find the value of permeability of sheet steel for flux densities of B; =04,
B, =0.8,B; =1.2,B, = 1.6 webers/m>.

3-2. Find the value of relative permeability (i, = u/uo) for sheet steel, cast steel,
and cast iron for a flux density of 0.8 webers/m?.

3-3. A ring of ferromagnetic material has a rectangular cross-section. The inner
diameter is 19 c¢m, the outer diameter is 23 ¢m, and the thickness is 2 cm.
There is a coil of 500 turns wound on the ring. When the coil has a current
of 3 amp, the flux in the core is 0.0006 weber. On the basis of the mag-
netic circuit concept, find the following quantities, all in rationalized mks
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units: (a) the mmf %; (b) the field intensity H;(c) the flux density B; (d)
the reluctance R; (¢) the permeability u; (f) the relative permeability
By = 1/uo.

3-4. The core shown in Fig. P-3-4 is made of cast iron. The depth into the page
is 7.5 cm. Coil N, has 537 turns. Find the current /; that will produce a
flux of 0.003 weber.

]

/
NI

|-

8 cm Scm
18 cm

Fig. P-3-4.

3-5. The three-leg magnetic circuit shown in Fig. P-3-5 is made of sheet steel.
Effective dimensions are shown in the following table.

Part  A(m?) I(m)
1 left 0.0014 046

2 right 0.0012 040
3 center 0.0024 0.14

em
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3-7.

38.
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Coil Ny has 160 turns. Current I, is fixed at 1.1 amp. Coil N, has 180
turns. Find the current 7, that will make the flux in the center leg, ¢3,
be 0.0034 weber.

The three-leg magnetic circuit shown in Fig. P-3-5 is made of cast steel.
Effective dimensions are given in the following table.

Part A(m?)  I(m)
1 left 0.0018 0.52

2 right 0.0016 0.50
3center 0.0026 0.16

Coil Ny has 230 turns. Coil N, has 300 turns. Current [, is fixed at
2 amp. Find the current I; that will make the flux in the center leg, ¢,
be 0.0032 weber.

The magnetic circuit shown in Fig. P-3-7 is made of laminated sheet steel
with a stacking factor of 0.94. (The stacking factor is the ratio of the
effective area to the gross area.) The gross dimension for depth into the
page is 8 cm. The length of the air gap is 0.4 cm. The other dimensions
are shown in the figure. The coil Ny has 800 turns. Find the current in
the coil that will make the flux be 0.0086 weber. Neglect fringing.

8 cm
5
4
/4
—
D 13¢cm
q
— 1N i
8 cm
8 cm 8 cm
15 cm
Fig. P-3-7.

For the magnetic circuit in Problem 3-7 and Fig. P-3-7, find the flux pro-
duced by a current of 4.5 amp. Neglect fringing.

The magnetic circuit of Problem 3-7 is to be energized with 10 amp in the
800-turn coil. The flux is to be 0.0086 weber. Find the length of the air
gap that is required for these conditions. Neglect fringing.

3-10. The cast iron core shown in Fig. P-3-10 has effective dimensions as follows:
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Part  A(m?)  I(m)
1 left 0.0038 0.36
2 right ? 0.52
3center 0.0032 0.14
4 air gap 0.0035 0.0025

The coil has 8600 At. The flux through the air gap is to be 0.003 weber.
Find the cross-sectional area of the right side of the core.

The cast steel core shown in Fig. P-3-11 has effective dimensions as shown
in the following table.

Part A(m?)  Km)
1 left 00006 040
2 right 0.0007  0.50

3 center 0.0008 0.12
4 airgap 0.00086 0.003

The coil on the right has 2950 At. Find the mmf of the other coil for the
following three cases: (a) The air gap flux is 0.0009 weber. (b) The air gap
flux is zero. (c) The left-side flux is zero.

m
R e I
L ¢f3l ‘ <
™ 1
q L >
<$>N ‘L qu—"f“'l >
! [ — T
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h (I J

Fig. P-3-11.



34

3-12.

3-13.
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A=¢N ¢=BA
AT ¢ B

H

F = Hi
i=FIN

Fig. P-3-12.

For the core shown in Fig. P-3-12, all legs have the same cross-sectional
area. Distances are given in the figure. Find the mmf ratio NI, [N, I, for
the following three cases: (a) The flux in the left leg is zero. (b) The flux
in the center leg is zero. (c) The flux in the right leg is zero.

A magnetic core is made with two parts as shown in Fig. P-3-13(a). Effec-
tive dimensions are as shown.

Part A(m?) I(m)

1left 0.0005 023
2right 0.0003 0.08

The core material has a magnetization curve that is approximated in ideal-
ized form as shown in Fig. P-3-13(b). The coil supplies 100 ampere-turns
(At). Find the flux, the flux density, and the field intensity in each part
of the core.

- —e
Aot }
; |
<~l~> 1

q ! M |

S e e :
l ¥

L ————— -0

Fig. P-3-13(a).
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B (weber/m2)

H (At/m)

Fig. P-3-13(b).

3-14. The core material in Fig. P-3-14 has a magnetization curve with idealized
form as given in Fig. P-3-13(b). Effective dimensions are shown.

Part A(m?)  I(m)
1 core 0.0038 0.62
2airgap 0.0042 0.0032

The coil N, has 850 turns. Find the flux across the air gap and the field
intensity in the core for the following values of current in the coil: (a)
2 amp, (b) 4 amp, (c) 6 amp, and (d) 8 amp.

Fig. P-3-14,



4
Sinusoidal Steady State

4-1 REVIEW

In many of the engineering devices to be studied in this book, there are time-
varying or moving magnetic fluxes. For continuous operation, a time variation
must be periodic, and this means usually sinusoidal. Any departure from this
ideal waveshape can be, if necessary, taken into account by the principle of
the Fourier series. That is, periodic waveshapes must be composed of sinusoids,
called fundamentals and harmonics, and the harmonics can be disregarded if
they are small enough, or else they can be considered separately.

For most of the devices to be considered in this book, sinusoidal steady state is
the most important mode of operation.* Although the reader is expected to be
reasonably familiar with the applicable methods of analysis, a brief review might
be welcome to many, at least to establish the notation and terminology to be
used.

For instance, let a current be a sinusoidal function of time

i =Inay cos (wt +a) 4-1)

where the amplitude I, (the subscript stands for maximum value) is /2 times
the rms (root-mean-square) or effective value I, and the radian frequency w (in
radians per second) in 27 times the frequency f (in Hertz). This current is repre-
sented by the phasor

1=1]a (4-2)

where the boldface symbol is used to distinguish the phasor, which is a complex
number, from its magnitude. The phasor thus introduced is an rms phasor. It is
also possible to use amplitude phasors like

Imax =-Imax & (4"3)

The value of phasor representation is largely based on the fact that the phasor
representing a sum of sinusoids (of the same frequency) is the complex sum of
the phasors representing the component sinusoids to be added. Therefore,
Kirchhoff’s laws can be written as phasor equations for sinusoidal steady state.

*The popular term a-c (alternating current) is less specific but acceptable.
36
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Furthermore, the differential equations by which voltages across passive circuits
are related to currents through the circuits, can be replaced by complex equations
in which voltage and current phasors are proportional to each other, the factor
of proportionality being the complex impedance or admittance of the circuit.

A sinusoidal time function whose phase angle is zero is said to be in the axis of
reference. Its phasor appears in a phasor diagram as a horizontal line with an
arrow pointing in the positive (right-hand) direction. The choice of the voltage
or current to be the axis of reference is arbitrary since it amounts to the same
thing as choosing the origin of the time scale, i.e., the instant when ¢ = 0.

When current and voltage are time-varying, their product, the power, must
also be a function of time. The average value of power (over one period or any
whole multiple thereof) for sinusoidal waveshapes is

P=VIcosf (4-4)

where V and I are the rms values of voltage and current, 6 is the phase difference
between them, and its cosine is called the power factor. For pure energy-
consuming elements, 6 =0 and cos 6 = 1, whereas for pure energy-storing ele-
ments (inductance and capacitance), 8 = +90° and cos 6 = 0. The average power
P is also often called the real power, active power, or simply power (in the con-
text of sinusoidal steady state).

The reactive power

Q=-VIsin0 (4-5)

accounts for the presence of energy-storing elements in the same way in which P
accounts for the presence of energy-consuming elements. The minus sign is an
arbitrary choice adopted by many (though not all) authors. To make it meaning-
ful, a more specific definition of the angle 6 is required. In this book (as in many
others), 6 is always to be understood as the angle by which the voltage leads the
current. Thereby, inductive (lagging) reactive power is negative, and capacitive
(leading) reactive power is positive. Reactive power has the same dimension as
active power, but its established unit is the var (volt-ampere reactive), in contrast
to the watt by which active power is measured.
The apparent power is the product of voltage and current rms values

P,=VI (4-6)

This quantity is used to express the rating (see the last two paragraphs of Section
1-6) of a power device intended to operate in the sinusoidal steady state, be-
cause the power losses in such a device depend on voltage and current and not
on their phase relation. The unit of apparent power is the volt-ampere.

All these quantities can be combined into a single complex number, the



38 ELECTRIC POWER SYSTEM COMPONENTS

complex power. In Cartesian (rectangular) form it is
P, =P+jQ (4-7)

By substituting Eqs. 4-4 and 4-5 into this definition, we obtain the complex
power in polar form

P,=VI(cos6 -jsin0)=VIeT®=vI|-0 =P, [-0 (4-8)

So complex power contains them all: average power is its real part, reactive
power is its imaginary part, apparent power is its magnitude, and the negative of
the phase angle is its angle.

4-2 HYSTERESIS

When a coil wound around a ferromagnetic core carries an alternating current 7,
then the mmf ¥ =Ni also alternates, and so does the flux ¢ produced by it.
Nevertheless, the instantaneous values of ¢ corresponding to the instantaneous
values of ¥ cannot be taken from the saturation curve ¢ versus ¥. That is so be-
cause, for an alternating field, the relation between the instantaneous values of
B and H does not follow a curve like Fig. 3-4, but rather a loop like Fig. 4-1.
What this diagram indicates is that the values of B depend not only on the

Fig. 4-1. Hysteresis loop.
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Fig. 4-2. Family of hysteresis loops.

values of H, but also on the previous history of the material. For instance, on
the ascending (lower) branch of the loop, the value corresponding to H, is B
whereas, on the descending (upper) branch, the value corresponding to H, is Bj.
The whole loop is called a hysteresis loop .*

The size and shape of such a loop depends (for a given material) on the maxi-
mum value of H. Figure 4-2 shows a family of hysteresis loops for several values
of Hy .. The dotted line drawn through the end points of the loops is called
the normal saturation (or magnetization) curve. This is the curve that is used for
magnetic circuit calculations like those in the previous chapter; in fact, the curves
of Fig. 3-5 are such normal magnetization curves; they are also approximately
valid for d-c magnetization.

Thus, the phenomenon of hysteresis may be bypassed in magnetic circuit cal-
culations, but it is very important nonetheless. To understand its significance,
we must first study the energy stored in a magnetic circuit.

*Hysteresis is Greek for lagging. What is meant is that B lags H (except at the tip of the
loop). For instance, when H is positive and reaches its zero value, B is still positive (at its
“residual” value B,; or, when B reaches zero, then H is already negative, etc.
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4-3 ENERGY STORAGE

Let a coil wound around a ferromagnetic core be connected to a voltage source
(of arbitrary wave shape). Then a current. flows through the coil, and

d\
= 1 + — -
v=Ri o 49)
where R is the resistance of the coil circuit. The source delivers energy to the

circuit at the rate
it e D @10)
poui=i dt ’
The first term represents the power consumed by the resistance. The second
term is the rate of change of energy stored in the magnetic field. Thus, the

energy delivered to the magnetic field during the time interval from ¢, to ¢, is

t, A,
Awm=f i% dt=f id\ @-11)
A

tl 1

where A; and A, are the flux linkages at the instants ¢, and z,, respectively. In
the case of a linear circuit (actual or approximated), this expression may be re-
solved into the form familiar from electric circuit analysis, by substituting A = Li:

i
AW, = f i d(Li) = g @ - %) (4-12)
il
In general (i.e., without assuming linearity), the energy may also be expressed in
magnetic circuit terms since the magnetic field is confined to the core. Thus

¢2 ¢2
AW,, = 1% dve)=| Fdo (4-13)
¢1 ¢l

where ¢, and ¢, are the values of the flux at the instants ¢; and ¢,.

Now the core can always be subdivided into parts within which the field is
uniform (even if these parts have to be infinitesimal). For each such part, the
substitutions § = H! and ¢ = BA can be made. Then the energy supplied to the
entire core between instants #; and ¢, is the sum

Bkz
AWm =Z f HklkAk dBk (4'14)
Kk Bkl

where By and By, are the flux densities in part & at #; and #,. The product
I Ay is the volume of part k of the core. Thus, we arrive at an expression for
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the increase of energy density (energy per volume) during the time interval from
t; to t, for part k. Using the lower case symbol w for energy density, and
omitting the subscript %,

B2
Awy, =f HdB 4-15)
Bl
This integral appears in Fig. 4-3 as the shaded area to the left of the saturation
curve. Incidentally, if the magnetic circuit is linear, the substitution of B = uH
or H = B/u makes it possible to evaluate the integral analytically:

H.
2 1 1
Awp = | Ha(uH)= 5 (@ - H} =55 B3 - B)= 5 (BaHy - BiH))
H,

(4-16)

the last of which can be recognized as the area of the trapezium into which the
shaded area of Fig. 4-3 changes for the linear case.

Now return to the hysteresis loop, which is redrawn in Fig. 4-4. Let the state
of the core material at a certain part of the core be given by the coordinates of
point a of the diagram for the instant ¢, and by those of point b for the instant
t,. Thus, the energy density increases between ¢, and £, by an amount repre-
sented by the area abca. Continue along the descending branch until point d is
reached at the instant #3. During the time interval from ¢, to t3 the energy
density decreases by an amount represented by the area bcdb. Note that more
energy has been supplied to the core than was returned by it even though H has
the same value (zero) at #; and #3. The excess energy per unit volume for one-
half cycle, represented by the area abda, is converted into heat inside the ferro-

Hy H,

Fig. 4-3. Energy density.
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Fig. 4-4. Hysteresis loss.

magnetic material. From the symmetry of the hysteresis loop it may be con-
cluded that the energy per unit volume per cycle converted into heat due to
hysteresis is represented by the whole loop area abdea.

The size of this area depends on the material and on the extent to which it is
magnetized. For a given material, it may be expressed as a function of the maxi-
mum flux density

§ a8k, B e @-17)

where the factor kj, varies quite widely but the exponent n ranges only between
1.5 and 2.5, depending on the material. Both constants, &, and #n, are found
empirically.

4-4 CORE LOSSES

The previous section has shown that, in a power-converting device using an iron
core, a certain amount of power must be lost due to hysteresis if the flux in the
core alternates. The term hysteresis loss must be understood to mean the average
power loss. It is obtained by multiplying the energy loss per cycle by the num-
ber of cycles per second (i.e., by the frequency f expressed in Hertz). For a
uniform core (or part of a core), the hysteresis loss in watts is

Ph = khof(Bmax)n (4'18)



SINUSOIDAL STEADY STATE 43

O

Fig. 4-5. Core cross-section and eddy-current paths.

where O is the volume of the core (or of the part). For a nonuniform core, the
losses are computed for each part and added.

If an experiment is conducted in which an alternating source is connected to a
coil wound around a ferromagnetic core and the power loss in the core is mea-
sured, this loss turns out to be much higher than Eq. 4-18 would indicate. The
explanation is that there are additional power losses attributed to currents in
the core. These currents are called eddy currents, and they are caused by elec-
tromagnetic induction since their paths, as sketched in Fig. 4-5, link alternating
fluxes. In fact, power losses due to eddy currents would be altogether too high
for efficient power-converting devices if they were not sharply reduced by the
standard remedy of breaking down the eddy-current paths. This is done by
using not solid but laminated cores for alternating fluxes. Such cores consist of
sheets separated from each other by thin insulating layers.* The eddy-current
loss in a laminated core (or, again, part of a core) can be approximated by

Pe = k8072f2 (Bmax)2 (4'19)

where 7 is the thickness of the laminations.

Since both hysteresis loss and eddy-current loss produce heat in the core, they
may be lumped together, under the name core losses (or, less accurately, iron
losses)

Pc =Ph +Pe = k;tf(Bmax)n + kéfz(Bmax)2 (4'20)

In the last form, the core losses are expressed in terms of variable quantities only
(volume and thickness of laminations being constants for a given core).

*As an inevitable consequence, the effective cross-sectional area of the core is slightly
smaller than the gross area. The ratio of effective area to gross area is called the stacking
factor.
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4-5 WAVE SHAPES AND EQUIVALENT CIRCUITS

Once again, we visualize connecting a voltage source to a coil wound around a
ferromagnetic core. This time, let the source be ideal and of sinusoidal wave-
shape, and let the effect of the circuit resistance be negligible. Our purpose is
to find the steady-state current.

If the circuit were linear, the coil would be a pure linear inductance L. Thus,
if the source voltage is taken as the axis of reference,

U= Vipax €OS wt (4-21)
then the current could be written as

. Vinax .

i=— Sin wt (4-22)

which indicates, among other things, that it lags the voltage by 90°.

Actually, the circuit is nonlinear. This has the consequence that, before the
current can be found, it is necessary to determine the steady-state flux by means
of Faraday’s induction law. (Without circuit resistance, the induced voltage
equals the source voltage.)

V.
=1 vdt= A'/"Sx sin wt (4-23)

In this last equation, we can recognize the maximum flux

V
Pmax = 7\/% (4"24)
Using the substitutions Vi, = /2 V and w = 27f, the relation between voltage

and flux in the sinusoidal steady state can be written

2
V2

with an easily remembered numerical coefficient. Note that the voltage magni-
tude is expressed by the rms value whereas, for the flux, the maximum value is
more significant.

More importantly, the last equation indicates that a sinusoidal source of given
magnitude and frequency dictates the steady-state flux magnitude, regardless of
any property of the core, or even (as long as the assumption of a negligible
resistance holds) in the absence of a core! What the core determines is the size
and waveshape of the current.

As a first approach, let core losses be neglected. The wave shape of the current
may be obtained, point by point, from a normal saturation curve (N¢ versus i).

V= Nfomax =444 Nfomax (4-25)
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Fig. 4-6. Current wave without hysteresis.

The more saturated the maximum flux, the more sharply peaked must the cur-
rent wave be, and the less can it resemble a sinusoid. Figure 4-6 shows a sinu-
soidal flux (according to Eq. 4-23) and the corresponding current wave. Dis-
torted though it is, it can still be considered to be in phase with the flux (strictly
speaking, the current fundamental is in phase with the flux) and thereby lagging
the voltage by 90°, as it must in any pure inductance, whether linear or not.
Thus, the power factor and the power consumed by the circuit are zero (no
wonder, when resistance and core losses have been neglected).

Figure 4-7 is a phasor diagram for this lossless circuit. Since phasors can only
represent sinusoids and the current is not a sinusoid, we should understand the
current phasor as representing the fundamental of the current wave. The result
P=0 remains valid since the current harmonics do not produce any average
power in the absence of voltage harmonics.

Now replace the normal saturation curve by a hysteresis loop, and use that to

Fig. 4-7. Phasor diagram of lossless coil.
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wt

Fig. 4-8. Current wave leading flux.

get the waveshape of the current. The result is shown in Fig. 4-8. This time, the
current wave (strictly speaking, again it is fundamental) is seen to lead the flux.
More insight can be gained by splitting the current into two fictitious compo-
nents. The one in phase with the flux is called the magnetizing current i,,,. The
other, i, leads the flux by 90° and thereby is in phase with the voltage, as if it
were flowing through a pure energy-consuming element. Note that this circuit
does consume power, namely the hysteresis loss

P=VIcos 0 = VI, (4-26)

To consider eddy currents as part of this concept, all that is needed is to add
another current component i, in phase with the voltage. Representation of each
of these currents (again, omitting their harmonics) by its rms phasor leads to the
equation

I=L,+1,+1, (4-27)

which can be interpreted as Kirchhoff’s current law applied to the equivalent
circuit of Fig. 49. It is also possible to combine the last two terms into one,
the core loss current

L=L,+1 (4-28)

Note that the circuit of a coil wound around a core cannot, if core losses are to
taken into consideration, be represented by an inductance alone. Energy-
consuming elements must be added to obtain a circuit that is valid for sinusoidal
steady state analysis. Since all elements of the equivalent circuit appear in
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ol
B I

Fig. 4-9. Equivalent circuit.

parallel, they are more conveniently expressed in mhos than in ohms. B, is
called the magnetizing susceptance, and G, and G, are conductances that can be
combined to a single core loss conductance

G.=G,+G, (429)

which carries the core loss current I,. All the elements can be combined to form
a complex admittance

Y=G,+jB,y, (4-30)

Note, incidentally, that B,,, is negative because the current I,,, lags the voltage by
90°. Also, B,, is not a linear circuit element because /,, is not proportional to ¥,
due to saturation. The parallel lines drawn in Fig. 49 next to the inductance
symbol (making it an “iron-cored” inductance) are suggestive of this fact. Never-
theless, the current I can always be expressed as

I=YV (4-31)
and the power consumed by the circuit is the core loss
P, =VIcosb =VI, (4-32)

A phasor diagram corresponding to this equivalent circuit is shown in Fig. 4-10.

Ih le Ic
I T >V
8 I

Fig. 4-10. Phasor diagram.
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Finally, it may be required to take the resistance R of the coil into considera-
tion. In this case, the equivalent circuit must be amended to contain this resis-
tance in series with the parallel group of elements shown in Fig. 4-9. The
equation

Cpia AN
v=Ri+ o (4-33)

is a nonlinear differential equation, since A is a nonlinear function of i (the
saturation curve). A solution (for i) requires an iterative procedure of digital
computation.

46 EXAMPLES
Example 4-1 (Section 4-3)

The cast steel core in Fig. E-4-1 is assumed to have constant permeability of
1.1 X 107 henrys per meter. The coil has 1200 turns. Effective dimensions
are: A;=0.003 m?, ;=05 m, A, =0.0034 m?, [, =0.0004 m. The flux in the
air gap is 0.003 weber. (a) Find the current in the coil. (b) Find the energy
stored in the air gap. (c) Find the energy stored in the steel. (d) Find the self-
inductance.

Solution
(a) Solve the magnetic circuit problem using a table.

Part #(weber) A(m?) B(weber/m?) H(At/m) I(m) HI(At)

steel core 0.003 0.003 10 910 0.5 455
air gap 0.003 0.0034 0.884 704,000 0.0004 281

Fig. E-4-1.
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The mmf required in the coil is N/ = Z HI = 736 At. The current in the coil
isI="736/1200 = 0.613 amp.

(b) Use Eq. 4-14 with By, =0, and restrict it to just one portion of the mag-
netic circuit. For the air gap

We = (gAg) 3 (HgBy;)
=0.0004 X 0.0034 X 3 X 704,000 X 0.884
=0.422 joules
(c) For the steel portion, the stored energy is
Wy = (s As) 5 (HyB;)
=0.5X 0003 X £X 910X 1
=0.683 joules
(d) The self-inductance is given by
L =\/i =Ng¢[i =(1200 X 0.003)/0.613 = 5.87 henrys

Example 4-2 (Section 4-4)

A sample of iron having a volume of 33 cm? is subjected to a magnetizing force
varying sinusoidally at a frequency of 400 Hz. The hysteresis loop is plotted
using the following scales: 1 cm represents 300 At/m, and 1 cm represents 0.2
weber/m?. The area of the hysteresis loop is 57.5 cm?. Find the hysteresis loss
in watts.

Solution

Let Py, denote the energy loss represented by Eq. 4-17. This is the energy loss
per unit volume for one cycle.

2\ /300 At 0.2 2 '
Pl = fHdB= (57-5 cm ) ( /m> ( weber/m - 3450 J3ou1es
cycle 1 cm 1 cm m” cycle

The hysteresis loss of Eq. 4-18 is P, multiplied by the volume and the frequency.
Py = P,0f
joul 1 1 ’
= (3450 —’°~“—es—) (400 e es) (33 cm®) < . )
e sec

m® cycl 100 cm

=455 watts
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Example 4-3 (Section 4-4)

The flux in a magnetic core is alternating sinusoidally with a frequency of
400 Hz. The maximum flux density is 0.6 weber/m?. The eddy-current loss is
28 w. Find the eddy-current loss in this core when the frequency is 300 Hz and
the maximum flux density is 0.7 weber/m?.

Solution
Let k, = k072
Use Eq. 4-19 to find k,.
P, 28 _, wattsm*
.= = =486X 107% ———
ke fiB? (400 X 0.6)* Hz? weber?

For the new frequency and new maximum flux density, we can find

P., =k, f2B? = (4.86 X 1074) (300)? (0.7)* =214 w

Example 4-4 (Section 4-4)

The total core losses (hysteresis plus eddy current) for a sheet steel core are
found to be 500 w at 25 Hz. When the frequency is increased to 50 Hz and the
maximum flux density is kept constant, the total core loss becomes 1400 w.
Find the hysteresis and eddy-current losses for both frequencies.

Solution
Since By, is constant, Eq. 4-20 can have the following form:
P, = Af+ Bf? where A = kj(Bmax)" and B = k¢(Bmax )?
For a frequency of 25 Hz, the core loss is
P, =500=A(25) + B(25)*
For a frequency of 50 Hz, the core loss is
P, =1400 = A(50) + B(50)*

Solve the two equations to find 4 =12 and B =0.32. Now, we can find the in-
dividual losses.

Py =Af, =300w. P,  =Bf2=200w
Py =Af, =600w P, =Bf2=800w
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Example 4-5 (Section 4-5)

A magnetic core is made of sheet steel laminations. Effective dimensions are:
length of 0.6 m and cross-section area of 0.0022 m?. The density of steel is
7700 kg/m3. The coil of 125 turns is energized with a 60-Hz voltage that makes
the flux be ¢(¢) = 0.003 sin 377 ¢ weber. Find (a) the applied voltage, (b) the
peak current, (c) the rms current, (d) the core loss, () the core loss current, and
(f) the magnetizing current.

Solution
(2) Use Eq.4-25 to find the rms voltage.
V=444 Nfpnax =444 X 125 X 60 X 0.003=100v
(b) The maximum flux density is found from
Bmax = ®max/A =0.003/0.0022 = 1.36 weber/m?®

From Fig. 3-5 find Hyeax =400 At/m. (The subscript max is reserved to
sinusoidal functions.) The peak current then is

Ipeak = Hyeai IIN = (400 X 0.6)/125 = 1.92 amp

(c) The apparent power, P,, is obtained from empirical data in Fig. E-4-5. For
Bpax = 1.36 weber/m?, we find P =11.7 volt-amps/kg. The weight of the
core is

Weight = (0.0022 m?) (0.6 m) (7700 kg/m3) = 10.1 kg
The exciting apparent power is
P, =(11.7 volt-amps/kg) (10.1 kg) = 118 volt-amps = VI

The rms current is / = P,/V'=118/100 = 1.18 amps. Notice that [yes > /2 1
because of the nonlinear relation between B and H.

(d) The coré losses are obtained from empirical data in Fig. E-4-5. For By, =
1.36 weber/m?, we find P* =2.2 w/kg. The core loss power is

P,=(22w/kg) (10.1kg)=22 w

(e) We can represent an iron cored reactor with an equivalent circuit as shown in
Fig. 4-9. This neglects the resistance of the wire in the coil. The core losses
are accounted for by a current J, that is in phase with the voltage function.
See Fig. 4-10.

I, =P,[V=22/100=0.22 amp
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Fig. E-4-5. Curves of core loss and exciting volt-amps for sheet steel.

(f) The exciting current I has been found from the apparent power. Use the
voltage function as the reference.

I.=1Icos0
0 =cos ' (I,/I) = cos™* (0.22/1.18) =79.3°
1=1.18/-79.3°=022-j1.16
The magnetizing current, ,,,, can be found from
I=1,+1,
L,=(0.22-j1.16)-(022+j0)=0-j1.16=1.16 [-90°

The iron cored reactor differs from an ideal linear inductance in that core
losses are present and the currents I,,, I,,,, and I are nonsinusoidal when the
flux function is a sinusoid.

Example 4-6 (Section 4-5)

The core of Example 4-5 has an air gap cut in it. The effective dimensions of
the air gap are an area of 0.0025 m? and a length of 0.002 m. The effective
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dimensions of the core are the same as given in Example 4-5. For the same flux,
&(#) = 0.003 sin 377 ¢t weber, find the rms current.

Solution

The voltage in the coil and all conditions in the steel core are the same as in Ex-
ample 4-5. The reluctance of the magnetic circuit will be increased by the
presence of the air gap, and the magnetizing component of the current will have
to supply more ampere-turns. The core-loss component of the current will be
the same. For this magnetic circuit, we can write

Nipy =N +img) = 0(Re + Rg)
where R is the reluctance of the steel core and R, is the reluctance of the
air gap.

I _ Pmax R, _ 0.003 X 0.002
mgmax TN 125X 4w X 1077 X 0.0025

=15.3 amp

This current is sinusoidal. Therefore, its rms value is
g = 15.3/+/2 =10.8 amp
Now we can find /,,,. From Example 4-5,1,,. = 1.16 amp.
Ly =1ye + Ippg = 1.16 +10.8 = 12 amp
The exciting current 7 is
I=1,+1,=(022+j0)+(0-;12)=022-;12=12/-89° amp

Comparing the answers from Examples 4-5 and 4-6, the presence of the air gap
results in a closer approximation to an ideal linear inductance, but at the price of
reduced value of inductance (and reactance).

4-7 PROBLEMS

4-1. Refer to the magnetization curve for cast steel in Fig. 3-5. Neglect hystere-
sis in this problem. (a) If the field intensity is the time function H(¢) =
2500 sin 3.14 ¢ At/m, draw a graph of the time function B(¢). (b) If the
flux density is the time function B(f) = 1.4 sin 3.14 ¢ webers/m?, draw a
graph of the time function H(?).

4-2. A ring of ferromagnetic material has a toroidal winding with 700 turns.
This magnetic circuit has cross-sectional area of 0.0004 m? and mean
length of 0.7 m. Assume the permeability is constant at 1.1 X 10~ henry
per meter. (a) Find the self-inductance and the energy stored in the mag-
netic field for a current of 0.12 amp. (b) For the same toroidal winding,
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but with an air core, find the self-inductance and the energy stored in the
magnetic field for a current of 0.12 amp.

A sheet steel core similar to Fig. E-4-1 is assumed to have constant per-
meability of 6.7 X 1073 henry per meter. The coil has 1400 turns. Effec-
tive dimensions are 4;=0.0052 m?, [;=0.7 m, A, =0.0064 m?, lg=
0.0005 m. The flux in the air gap is 0.006 weber. (a) Find the current in
the coil. (b) Find the energy stored in the air gap. (c) Find the energy
stored in the steel. (d) Find the self-inductance.

In plotting a hysteresis loop, the following scales are used: 1 cm represents
400 At/m, and 1 cm represents 0.1 weber/m?. For a certain material, the
area of the loop is 28 cm?. For a volume of 450 c¢m?, calculate the hys-
teresis loss in joules per cycle for the specimen tested.

The flux in a magnetic core is alternating sinusoidally with a frequency of
60 Hz. The maximum flux density is 0.6 weber/m?. The eddy-current
loss is 16 w. Find the eddy-current loss in this core when the frequency is
90 Hz and the maximum flux density is 0.5 weber/m?.

The total core loss (hysteresis plus eddy current) for a sheet steel core
is found to be 1200 w at 100 Hz. If the maximum flux density is kept
constant and the frequency is reduced to 60 Hz, the total core loss is
found to be 528 w. Find the separate hysteresis and eddy-current losses
for both frequencies.

A sheet steel core has a coil with 1200 turns. The resistance of the coil
may be neglected. The frequency is held constant at 60 Hz. The core
losses are 1250 w when energized from a sinusoidal voltage source with
rms voltage of 150 v. The core losses are 603 w when the voltage is
changed to 100 v. The core losses are 175 w when the voltage is 50 v.
Find the exponent # in Eq. 4-20.

A sheet steel core has a coil with 70 turns. The resistance of the coil may
be neglected. The sinusoidal voltage is held constant at rms value of 100 v.
With a frequency of 30 Hz, the hysteresis loss is 90.5 w and the eddy-
current loss is 64.5 w. With a frequency of 60 Hz, the total core loss is
116.5 w. Find the exponent n in Eq. 4-20.

Data for one-half of the symmetrical hysteresis loop for the steel in a core
are given.

B weber/m? 0 045 0.80 100 090 0.77 0.60 030 O
H At/m 190 200 245 300 100 O -80 -155 -190

Effective dimensions of the core are area of 0.04 m? and length of 1.7 m.
The flux density function is B(¢) = 1.00 sin 314 ¢ webers/m?. Find the hys-
teresis loss in watts.

A coil with 62 turns is wound around the core of Problem 49. A sinu-
soidal voltage of 50-Hz frequency is impressed on this coil. (a) Find the
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rms magnitude of the voltage to make the given hysteresis loop appli-
cable. (b) Find the peak value of the current. (c) Draw neat curves of the
voltage and the current for one cycle.

A sinusoidal voltage is impressed on a reactor coil. Assume the exponent
n in the hysteresis loss to be 2. Resistance of the coil is to be neglected.
Determine the percent change in flux, hysteresis loss, eddy-current loss,
and coil current for the following conditions: (a) magnitude of voltage is
increased 10 percent with frequency unchanged; (b) frequency is increased
10 percent with the magnitude of voltage unchanged; (c) both frequency
and magnitude of voltage are increased 10 percent.

Two reactor cores are made of the same material with laminations of the
same thickness. When Core 1 is operated with 60 Hz and Bp,,, at 1.3
webers/m?, the voltage is 570 v, the current is 1.35 amp, the core loss
power is 184 w, and the power factor is 0.24 lag. Core 2 has all linear
dimensions 30 percent larger than Core 1. When Core 2 is operated with
60 Hz and By, at 1.3 webers/m?, find the voltage, current, core loss
power, and power factor.

A magnetic core is made of sheet steel laminations. Effective dimensions
are mean length of 0.8 m, and cross-section area of 0.0037 m?. The
density of steel is 7700 kg/m3. The coil of 86 turns is energized from a
60-Hz voltage source that makes the flux be ¢(¢) = 0.0048 sin 377 r weber.
Find (a) the applied voltage, (b) the peak current, (c) the rms current, (d)
the core loss, and (¢) the magnetizing current.

An air gap is added to the core of Problem 4-13. Effective dimensions of
the air gap are length of 0.002 m and cross-section area of 0.0042 m?. All
given conditions in Problem 4-13 still apply. Find (a) the rms current, and
(b) the power factor.

A magnetic core is made of sheet steel laminations. Effective dimensions
are cross-section area of 0.0041 m? and mean length of 0.82 m. The coil
of 140 turns is energized from a 60-Hz voltage source. The input power is
80 w. Find the voltage and current. Neglect coil resistance in this problem.
A magnetic core is made of sheet steel laminations. There are no air gaps.
The core has two parts with effective dimensions given.

Part A(m?) I(m)
1 0.0044 0.2
2 0.0036 0.6

A coil with 220 turns is energized from a 60-Hz voltage source. The flux
is ¢(¢) = 0.00546 sin 377 t weber. Find (a) the core loss in each part of
the core, (b) the applied voltage, and (c) the rms current.



5
Transformers

5-1 THE IDEAL TRANSFORMER

The purpose of a power transformer, as explained in Section 1-3, is to enable
different parts of a power system to operate at different voltages. Such a trans-
former may be interposed between a generator and a transmission line, between
a distribution network and a load, etc. It should neither consume nor store any
energy. Thus, its input power should equal its output power at any instant. Re-
ferring to Fig. 5-1, this requirement can be written as

Uy il =U, i2 (5-1)
Since the purpose of a transformer calls for a constant voltage ratio, this means

oy (52)
U,

and
i 1
== (5-3)
153 a

where the constant a is called the ratio of transformation.*

A device that satisfies Eqs. (5-2) and (5-3) is called an ideal transformer. Of
course, nothing man-made can ever be ideal, but it is possible, in the case of the
transformer, to come close to the ideal by remarkably simple means.

Consider once again a ferromagnetic core, this time one with two coils wound
around it, as shown schematically in Fig. 5-2.F Call their turns numbers NV, and
N, , respectively. Let there be a flux ¢ in the core. Then the voltages induced
in the coils are

d¢

v, =N, d—t (54)

*This is a traditional but arbitrary definition. It would be equally valid to give a name
and a symbol to the ratio 1/z = v, /vy =i, /i;.

+The figure is drawn only to illustrate the principle of a transformer, not its physical ap-
pearance. On an actual transformer, the two coils are arranged to make full use of the core
and to provide close magnetic coupling at the same time.

56
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+ +
Vl V2

Fig. 5-1. Assumed positive directions and polarities.

d¢
v, =N, — 5-5
2 2 dt ( )
Dividing Eq. 5-4 by Eq. 5-5 leads to the desired constant voltage ratio
Uy N 1
—=g=— 5-6
Uy ¢ N. 2 ( )

But how about the current ratio? The key to the answer is that the flux must
be produced by the combined mmf of the two currents

§=N1i1 _N2i2 (5'7)

where the minus sign is the result of having used the same current arrows in
Fig. 5-2 as in Fig. 5-1. Note that Eq. 5-3 can be satisfied only if =0 at all
times. On the other hand, surely the flux cannot be zero at all times if nonzero

Vl C*
s

VUV VUV VU

“ P
vy dc s
SRECA pe o N

Fig. 5-2. Core with two coils.
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voltages are to be induced. The only possible conclusion is that an ideal trans-
former must have a core of zero reluctance (or infinite permeance). Or, to use
electric circuit terms, the two coils must have infinite inductances. This shows
that the use of ferromagnetic core material, with its high permeability, serves
not only to link two coils to one flux better, but also to come close to satisfying
the condition of zero reluctance.

Now the principle of operation of a transformer can be explained. Connecting
coil 1 (called the primary) to a voltage source dictates the flux in the core, in
accordance with Eq. 5-4, and thereby the voltage induced in coil 2 (the second-
ary), in accordance with Eq. 5-5. Aslong as nothing is connected to the second-
ary terminals (open-circuit), the primary coil draws zero current from the source
(ideally) because it is an infinite inductance connected to a finite source voltage.
But when a load is connected to the secondary terminals, the current in the
secondary circuit would produce an infinite flux in the core if this were not
counteracted by a primary current satisfying the ideal current ratio. As a result,
power can be transferred from the source to the load even though the two cir-
cuits are not connected to each other.

There remains a question of polarities to be resolved. Interchanging one pair
of terminals in Fig. 5-2 would introduce a minus sign into Eq. 5-2, and reversing
one current arrow would do the same thing to Eq. 5-3. The best way to handle
that is to use the same dot notation that most readers should have encountered
in circuit analysis in the study of mutual inductance. One dot is placed at one
terminal of each coil, indicating that

(a) voltages from dotted to undotted terminals have the same sign, and
(b) currents entering at the dotted terminals produce mmfs in the same direc-
tion (i.e., aiding each other in producing a flux).

This means that, in Fig. 5-2, dots could be placed at terminals  and ¢ (or b
and d). With the aid of dots, schematic diagrams can be drawn in a much simpler
way. For instance, Fig. 5-3 contains exactly the same information as Fig. 5-2.

5-2 IMPERFECTIONS

Since a core cannot really have zero reluctance, the total mmf in an actual trans-
former is not really zero. Its value can be determined for every instantaneous
value of flux by the methods studied for magnetic circuits in Chapter 3. After
that, Eq. 5-7 may be solved for the current i,

F N,

':——-+——~' -
iy A Nllz (5-8)
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Fig. 5-3. lllustrating dot notation.

splitting this current into two fictitious but meaningful components. The first
term is what the current #; would be if the secondary circuit were opened (or
even removed). It is the magnetizing current

¥
i = 5-9
Im N, (5-9)
The second term is what i; would be if the transformer were ideal (F = 0).
y _ N2,
i2 = ]Vj- 173 (5-10)

It is called the secondary current referred to the primary. With this terminology,
Eq. 5-8 can be rewritten

iy =iy tiy (5-11)

It was shown in the previous chapter that the magnetizing current, in order to
produce a time-varying flux, must be accompanied by a core loss component.
So there is a second imperfection to be considered, changing the current
equation to

iy Sl Hi, iy =ity (5-12)

Thus, two imperfections, the finite core reluctance and the core losses, act to
spoil what would otherwise be the ideal current ratio. For an actual transformer,
Eq. 5-3 must be replaced by Eq. 5-10 in the form

o7
Iy

(5-13)

1
i2 a

Additional imperfections are equally effective in spoiling the voltage ratio.
They are the coil resistances and the leakage fluxes. To take them into con-

sideration, refer to Fig. 54, which is actually Fig. 5-2 redrawn, but with resis-
tances added and typical flux lines sketched. It shows that three distinctive
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Fig. 5-4. Resistances and leakage fluxes.

fluxes can be identified. The main flux ¢, , which follows the magnetic circuit
and thereby links both coils, is considered positive when the mmf ¥ is positive
according to Eq. 5-7. Each of the two leakage fluxes ¢, and ¢, links only the
one current that produces it, and each leakage flux is considered positive when
its own current is positive. (Current directions were assigned earlier.)

The total fluxes linking the two coils are no longer the same. Call them

P1=0m * ¢y, (5-14)
and
¢2 = O ~ P2 (5-15)
The voltage equations for each coil now are written as follows:
d¢,
=R, i, +N;, — 5-16
U, 11 1 dt ( )
do,
=-R,iy, + N, — 5-17
Uy 2ls 2 dt ( )

Now substitute Eqgs. 5-14 and 5-15 into Egs. 5-16 and 5-17, and arrange them
to read

d¢, d¢‘m
=Ryi; +N; —L +N, — -1
U1 1h L gy ' (5-18)



TRANSFORMERS 61

. d¢ d¢
v, = -R,yi, - N, 7;1 +N, # (5-19)

The last terms in these two equations are what the voltages would be in each
coil if there were no resistances and no leakage fluxes. The symbols e; and e,
are commonly used for them. As far as the leakage flux terms are concerned,
they can be expressed as voltages across linear inductances L ;; and L, , since the
leakage fluxes have paths that are largely in air, making them less susceptible to
saturation. So the two voltage equations can be rewritten once more to read

di

V; =€, +R1i1 +L1,dL; (5-20)
di

Uy, =€ — R2 i2 - Lzl dL; (5-21)

See that the voltages e, and e,, that is, the voltages induced by the main flux,
satisfy the ideal voltage ratio
e
L =q (5-22)
€2
whereas the terminal voltages v, and v, differ from them by the effects of
imperfections.

5-3 SINUSOIDAL STEADY-STATE EQUATIONS

All equations relating time-varying voltages and currents to each other can be
“translated” into sinusoidal steady-state “language,” i.e., into phasor equations.
In the case of equations stating the voltage or current ratio, all that is needed is
to replace the time function symbols by the corresponding phasor symbols, since
the ratio 4 is a constant so that there are no phase differences to be considered.
Thus Egs. 5-13 and 5-22 become

L 1

2== (523)
12 a

E,

—L= 524
E, ¢ (524)

Next, the voltage equations, Egs. 520 and 5-21, are to be changed into phasor
form. Remember that the derivative of a sinusoid always leads that sinusoid by
90°, and that the magnitude (amplitude or rms value) of the derivative is that of
the original sinusoid multiplied by the radian frequency w. In other words, the
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phasor representing the derivative is the phasor representing the original sinusoid
multiplied by jw. Furthermore, the product of the radian frequency and an
inductance is a reactance. So the voltage equations in phasor form contain the
leakage reactances called X; and X, (The subscript / for leakage is omitted as
unnecessary because there will be no other reactances considered in this context).
These equations are

Vl =E1 +Rlll +jX111 (5'25)
V2 = E2 - R212 - jX212 (5'26)

Finally, there is the current equation, Eq. 5-12, to be written in phasor form.
The (fundamental of the) pure magnetizing current i, is in phase with the flux
it produces, which is the main flux ¢,,, and the value of i,,, depends on that of
¢m. Since i,, is in phase with ¢,, , it lags the voltage e; by 90° since that voltage
is induced by ¢,,,. Similarly, the core loss current i, is in phase with e, and its
value also depends on the flux ¢,,.* Asa result of all this, the current equation
can be written

I =Ic + Im +I; = GcEl +ijEl +I; (5'27)

where G, and B,, are concepts familiar from Section 4-5. It should be re-
membered that B,, (and also G,,to a lesser extent) isnot a linear circuit element,
since a flux in a ferromagnetic core is not proportional to the mmf that produces
it.

5-4 THE BASIC EQUIVALENT CIRCUIT

The five equations of the previous section are statements of the voltage and
current ratios of a fictitious ideal transformer plus Kirchhoff’s voltage and cur-
rent equations of a circuit that relates the voltages and currents of the actual
transformer to those of the ideal one. The equivalent circuit drawn in Fig. 5-5
shows the actual voltages ¥, and V, and the actual currents I, and I, as its
terminal quantities, and it satisfies the five equations. What is more, all passive
elements of that circuit represent imperfections of the actual transformer. In
other words, if these imperfections were zero, the entire circuit would be re-
duced to that of an ideal transformer. Note that the series elements (those
expressed in ohms) are those that spoil the ideal voltage ratio, whereas the ele-
ments across the voltage £, (expressed in mhos) are those that spoil the ideal
current ratio.

The equations, and also the diagram, may be somewhat simplified by the use
of complex circuit elements. Thus, the resistances and leakage reactances may
be combined to form complex impedances

*This neglects the small contribution the leakage fluxes make to the core losses.
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Fig. 5-5. Basic equivalent circuit.

R, +jX, =2,
R, +jX; =12,

(5-28)
(5-29)
and the magnetizing susceptance (which, by the way, is negative) and the core
loss conductance form a (nonlinear) complex admittance already encountered in
Section 4-5

(5-30)

The voltage and current equations (the last three equations in the previous
section) now read

Gc +ij =Y¢,

V, =E, +Z1, (531)
V2 = E2 - 2212 (5-32)
I =1, +Y, E, (533)

The equivalent circuit in its simplified form appears in Fig. 5-6. It still shows
the actual transformer as consisting of an ideal transformer plus elements repre-
senting its imperfections.

I L I
>z 1 |
| It | L2
+ ° ° +
+ +
n %, E g g 12} 2)
Ideal
a:1

Fig. 5-6. Complex circuit elements.
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5-5 A CHOICE OF EQUIVALENT CIRCUITS

Before further studies of a transformer, or of the power system of which itis a
part, are undertaken, the equivalent circuit will be simplified some more. Asa
first step, all elements can be made to appear on the same side of the ideal trans-
former, instead of being on both sides. For instance, the impedance Z, can be
transferred to the primary side. For this purpose, the secondary voltage equa-
tion will be multiplied by the turns ratio a

aV2 = aE2 - aZ2 12 (5-34)
which, with the aid of the ratio equations, Egs. 523 and 5-24, can be written as
aV2 = El - a222I; (5‘35)

To satisfy this modified secondary voltage equation, as well as the other four
equations of Section 5-3, the equivalent circuit must be redrawn as shown in
Fig. 5-7.

Comparing this diagram to the previous one shows that the element Z, was
transferred from the right side to the left side of the ideal transformer. For that
purpose, Z, had to be multiplied by a?, the square of the turns ratio. This is
significant, and not too surprising. After all, the primary voltage of an ideal
transformer is @ times the secondary voltage, and its primary current is 1/a
times the secondary current. This leads logically to the rule that an impedance
can be transferred from the secondary to the primary side by being multiplied
by 4%, and from the primary to the secondary side by being multiplied by
(1/a)? , while the opposite is true for admittances.

Figure 5-7 shows all elements on the primary side of the ideal transformer.
They can just as well all appear on the secondary side, as shown in Fig. 5-8.
This can be obtained simply by following the rule formulated in the last para-
graph, or more rigorously as follows: multiply the primary voltage equation

I
—
[ ] Y +
g
VIdeal
a:l

Fig. 5-7. All elements on primary side.
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1z

L a? I
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1 z, p——
+ o +
Ideal )
a:1

Fig. 5-8. All elements on secondary side.

(Eq. 5-31) by 1/a and write it in the form

a2

"l‘Vl =E, +\ L Zl) (aly) (5-36)
a

and multiply the current equation (Eq. 5-33) by & in the form
aIl = 12 + a2Y¢l E2 = 12 + Y¢2 E2 (5-37)

which will confirm that the rule works correctly.
In Eq. 5-37, a new symbol was introduced

Yy, =a*Y,, (5-38)

This was done to stress the point that there is no preference between the last
two equivalent circuits. Which of the two coils of a transformer is to be called
the primary and which the secondary depends entirely on which one is con-
nected to the source and which one to the load; in other words, on the direction
of power flow. The same transformer can equally well be used to step up a
voltage or to step it down. Nor is it necessary ever to memorize any rule in terms
of multiplying or dividing by @. All that is needed is to realize that, when an
impedance is to be transferred from the low voltage side to the high voltage side,
it must be multiplied by the factor that will make it larger, etc.

Having now collected all elements on one side of the ideal transformer leads to
a T-shaped connection of three complex elements, all of which are referred to
the same side. The next step is to change the T into an L by transferring the
admittance branch either to the left or to the right, at some expense of accuracy.
The error committed by this operation is small enough to be permissible, pro-
vided the imperfections represented by the complex elements are as small as
they must be if the transformer is to serve its purpose.

For instance, let the circuit of Fig. 5-7 be altered by moving the admittance
Yy, to the left terminals. The voltage across Z, is now changed because the
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current through it is now I; - I instead of I,. Nevertheless, the voltage across
Z, could never be more than a small fraction of V., even in the worst case,
namely when the current J; has its rated magnitude compared to which Iy is
only a small fraction. So the error in the voltage across Z, cannot be more than
a small fraction of a small fraction of ¥, and thereby it remains within reason-
able limits of accuracy inherent in all engineering calculations. The same thing
is true about the current error, or about the errors resulting from shifting the
admittance to the right side of the T, in either one of the two equivalent circuits
with Ts.

But what was accomplished by sacrificing accuracy to change Ts into Ls?
First of all, the impedance elements are now connected in series and can,
therefore, be combined into one:

2,+d*Z, =7, (5-39)
1
a—z‘Zl + Z2 = Zez (5‘40)

These are called the equivalent impedances of the transformer, referred to the
primary and secondary side, respectively. They combine the resistances and
leakage reactances of the two coils. Their real and imaginary parts are

Re Z, =R, =R, +a’R, (5-41)

ﬂm Zel =X€1 =X1 +a2X2 (5‘42)
1

Re Z,, =R., = Ri +R, (5-43)
1

i 2, = Xe, = X1+ X, (5-44)

Note that each of these resistances, reactances, and impedances can be trans-
ferred from the secondary to the primary side by means of the factor a2, and
vice versa. Figure 5-9 shows the four approximate equivalent circuits obtained
by the method discussed. The idea is that results obtained from any of these
circuits are practically identical, so that, for any problem to be solved, the most
convenient circuit can be chosen.

5-6 VOLTAGE REGULATION

The study of a power transformer is largely the study of the effects of its im-
perfections, and the approximate equivalent circuits are the best tools for that
purpose.
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Ideal
a:l
L I
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1~
L2
+ . o +
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Ideal
a:1
I, I,
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4 Yol b @
Ideal
a:1

Fig. 5-9. Four approximate equivalent circuits.

If the imperfections were negligibly small, the rms value of the primary voltage
¥V, would be ¢ times the rms value of the secondary voltage ¥, . Due to the im-
perfections represented by the impedance Z, , there is a difference between the
magnitudes of ¥, and aV,. That difference depends on what is connected to
the two pairs of terminals, or, as it is called, on the operating condition of the
transformer. Since there is an infinite multitude of possible operating condi-
tions, certain definitions have been chosen to make it possible to describe or
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choose a transformer on the basis of how close it comes to the ideal voltage
ratio.

To begin with, there is an accepted definition of the term rated conditions for
a power transformer. It means rated voltage and rated current at the secondary
terminals. Notice that this definition does not contain any statement about the
phase relation between this voltage and current. A transformer is thus said to
operate under rated conditions when

V2 = V2 rated (5'45)
and
P
I =1 tateq = 'I,‘I_Lat_eq‘ (5-46)
2 rated

The ratings of a power transformer, as they appear on its name plate, also con-
tain a primary voltage. The meaning and purpose of this rating are to establish
the exact turns ratio

a= Vi rated (5_47)
V) rated
Nevertheless, the primary terminal voltage under rated conditions is, in general,
not Vy rateq- Its actual value depends on the operating condition, and can be
calculated from any equivalent circuit.

The sensible choice of a circuit for a voltage calculation is one that does not
require any current calculations. Thus, to find V; from given values of ¥, and
I, , we may either choose the diagram of Fig. 5-9a and write the voltage phasor
equation

I
Vi=aVy +Z,, ;2 (5-48)

or we may choose Fig. 5-9c and write
Vi=a(V, +Z,1,) (5-49)

which comes to exactly the same thing. In both cases, the rated values are to be
substituted for ¥, and for I,, and the phase difference between these two
quantities must be known. Note, incidentally, that the use of Fig. 5-9b or
Fig. 5-9d would have required solving a current equation first, and yet the result
would have been no more accurate.

The established standard for the departure from the ideal voltage ratio of a
power transformer is the difference between the magnitudes of V, and aV,,
normalized by being divided by the rated value, and called the regulation (short
for voltage regulation).
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V1 "aVz Vl/[l' V2
= = 5-50
¢ aV2 V2 ( )

where V, is the rated value, and ¥, (or V,/a) is calculated from Eqs. 5-48 or
5-49. Note that the regulation depends on the phase difference between V, and
I, but that the voltages in Eq. 5-50 are expressed as magnitudes, not phasors.
For an ideal transformer, € = 0, regardless of the load power factor.

Regulation can also be defined in terms of no-load and full-load voltages. Let
the transformer operate under fullload (i.., rated) conditions, as stated by
Eqgs. 5-45 and 5-46. This requires that the input voltage be adjusted to the value
obtained from Eq. 5-48 or Eq. 5-49. Now disconnect the load, thereby make
I, =0 and observe the change in output voltage V, to its new value ¥, /a. This
leads to the expression

Vonr = V-
€= 2NL ZFL (5-51)
£ FL
whereby the regulation is seen as the normalized difference between the output
voltage at no-load and at full-load, when the input voltage is held at the value
that makes V,op = Varated-

The three phasor diagrams of Fig. 5-10 illustrate how the regulation of a given
transformer depends on the power factor of the load. In diagram (a), the cur-
rent is in phase with the voltage (the load is resistive, its power factor is unity),
whereas in diagram (b), the current lags the voltage (the load is inductive, the
power factor is called lagging), and in diagram (c), the current leads the voltage
(the load is capacitive, its power factor is said to be leading). In each case, the
voltage Ze, I, must be small compared to V, (in fact, much smaller than in the
diagrams where its size is much exaggerated for clarity’s sake). The regulation in
case (b) is much worse (larger) than in case (a), whereas in case (c) it is even
negative,

A sample calculation, using realistic numerical values, is given in Example 5-1.
The concept of regulation will reappear when generators are discussed in later
chapters.

1
" 1 I 1
‘Ma TVI 2 FVI
Z,, Iy % Z, I
2
— WL N2 2
I h " Y
)
(a) )] (©)
Resistive load Inductive load Capacitive load

Fig. 5-10. Voltage regulation.
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57 EFFICIENCY

A glance at any equivalent transformer circuit shows that it contains both
energy-consuming and energy-storing elements. This means that the trans-
former, due to its imperfections, ‘“consumes™ both real power and reactive
power. Of all the effects of its imperfections, the consumption of real power is
the most serious one because it means that there is continuously some energy to
be supplied (and paid for) that gets lost instead of reaching the load for which it
is intended.

The concepts of power losses and efficiency were introduced in Section 1-6,
and their relations are given by Eqs. 1-1 through 1-4. In the case of the trans-
former, the power losses are clearly identified as the core losses (hysteresis and
eddy currents) in the ferromagnetic core and the so-called copper losses caused
by the energy-consuming property (i.e., the resistance) of the conducting ma-
terial (usually copper) of the coils. In terms of elements of the approximate
equivalent circuits, the core losses are represented by the real part of the admit-
tance Yy or Yy , and the copper losses by the real part of the impedance
Z, orZ, .

To obtain mathematical expressions of the power losses, the most convenient
of the various equivalent circuits should be chosen in each case. Thus, the cop-
per losses may be written from Fig. 5-9 (b) or (¢):

Pr ~R, I} =R, I3 (5-52)

It is true that these two expressions are not identical, since /, does not equal
al; whereas R, =a2Rez. In fact, both expressions are only approximations
while the truth lies somewhere in the middle (see the “‘exact’” equivalent circuit
of Fig. 5-6). The point is that, such inaccuracies are permissible because the
power losses are small in comparison to rated output power.

The core losses are best obtained from Fig. 5-9 (a) or (d):

P, ~G, Vi =G, V3 (5-53)

where the symbols G, and G, are introduced for the real parts of Y, and
Y,, , respectively. Appropriate comments on the accuracy of these expressions
run similar to those about copper losses.

The efficiency of a given transformer depends on its operating condition. In
most cases of interest, values of efficiency are based on rated output voltage,
but they cannot be limited to rated output current because efficiency varies with
the magnitude and the phase angle of the load current.

Using Eq. 1-4, the efficiency of a transformer can be written:

_ V212 Ccos 02
Vol cosb, + G, Vi +R, I3

n (5-54)
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1

Fig. 5-11. Losses and efficiency.

where V3 =V, 4404, and 0, is the phase difference between ¥V, and I,. Note
that only output quantities appear in this equation, and only 7, and 6, (both
determined by the load) are variable parameters. Note also that the core losses
are constant (i.e., independent of the load) while the copper losses are propor-
tional to the square of the load current. Sample calculations are given in
Example 5-2.

Figure 5-11 shows how the power losses and the efficiency of a transformer
vary with its load, for a constant value of the load power factor. The abscissa
can be the load current I, or, by means of scale changes, the apparent power
Va1, or the power V,1, cos 0, delivered to the load. At no-load, the efficiency
must be zero because the output is zero while the input is not (it equals the core
losses). With increasing load, the efficiency curve rises for a while but ulti-
mately, it must go down and approach zero asymptotically because of the
rapidly increasing copper losses. (Equation 5-54 shows that the limit of n for
I, > o is zero.)

So the efficiency curve must have a maximum that can be calculated by dif-
ferentiating Eq. 5-54 with respect to I, (remembering that ¥, and cos 8, are
constants). Thus, for maximum efficiency,

dn
—= 5-55
i, (5-55)
which results in
Ge, V} =R, 13 (5-56)

indicating that the efficiency is highest at that load at which the constant losses
(the core losses) equal the losses that vary with the load (the copper losses). The
same statement is also applicable, in principle, to motors and generators.
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If the curves of Fig. 5-11 are drawn for a different power factor, the losses
curve remains unchanged, but the efficiency at any value of load current is
highest at unity power factor and goes down as the power factor decreases, as
can be seen from Eq. 5-54.

If a transformer is intended to opetrate continuously at its full rated load, it
can and should be designed to have its highest efficiency at rated load. Many
power transformers, however, supply loads that change from time to time, but
follow the same pattern day after day. For such a transformer, the efficiency at
one specific load is not as significant as the energy efficiency for the whole load

cycle (usually, a day).
12
[* o

t

w = (5-57)

rt, t, t,
f Poutdt+f P, dt+f Pg dt
t t, t

1 1 1

where the integration limits ¢, and ¢, are the beginning and end of a load cycle.
See the sample calculations of Example 5-3.

5-8 A LOOK AT DESIGN PRINCIPLES

At this point, it is instructive to look at the physical dimensions of a trans-
former and their relation to power losses. Suppose a given transformer design
for given ratings were changed by multiplying every linear dimension by a factor
k>1. The cross-section of the core would then be multiplied by k2, and the
flux density by 1/k*. The volume of the core would be increased by the factor
k*, and the core losses (see Egs. 4-18 and 4-19) would thereby be approximately
(by giving the hysteresis loss exponent n the reasonable value of 2) reduced by
the factor k. The same is true for the copper losses, since the cross-section of all
conductors would be multiplied by k2, their lengths by k, and, thus, their resis-
tances by 1/k. So each of the power losses can be reduced as much as the de-
signer wants, at the expense of increased size, weight, and cost of the trans-
former. The actual design is the result of a trade-off between operating expenses
(i.e., the cost of lost energy) and purchasing price. The same kind of considera-
tions apply to the design of electric motors and generators.

Another pertinent question in this context is how a given transformer design
ought to be changed for a different rating. Some insight can be gained by mak-
ing the arbitrary but plausible assumption that the flux density B in the core and
the current density J in the conductors be maintained at the same values. Now
if all linear dimensions are multiplied by a factor K, both the flux and the cur-
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rent are multiplied by K2?. Since flux is proportional to voltage (for constant
frequency, see Eq. 4-25), it follows that the volt-ampere rating of the trans-
former, is multiplied by K*. On the other hand, the core losses are multiplied
by K> (see again Egs. 4-18 and 4-19), and so are the copper losses, because
RI? = (pl/A)(JA)? = plAJ? where A is the cross-sectional area of a conductor
and / is its length. To summarize: the rating increases with the fourth power of
a factor K > 1, and the losses only with the third power. The larger the trans-
former, the better is its efficiency.

This kind of reasoning explains what is behind the trend toward ever increasing
ratings of individual transformers. (Essentially the same can be said about
generators.) One larger unit is more efficient than several smaller ones for the
same total output. But there is a penalty to be paid for the advantage of the
larger unit size. While the power losses grow with the third power of the scale
factor K, the surface on whose magnitude the dissipation of these losses (in the
form of heat) depends, increases only with the second power of K. The larger
unit with the more favorable efficiency presents a more difficult cooling
problem.

There are many techniques for its solution. The surface can be increased by
cooling ribs. When this becomes insufficient, heat convection can be improved
by various artificial means. Fans can be used to increase the motion of the
ambient air, and more effective cooling media, like water, can be used. Large
transformers are frequently placed in tanks filled with cooling 0il; many large
generators use hydrogen as a cooling medium. Sizes of transformers and genera-
tors have kept growing through the years just as fast as improved cooling tech-
niques became available and economically worthwhile.

5-9 TESTING

The behavior of a transformer under any set of operating conditions can be
predicted from its equivalent circuit. Both the manufacturer and the user of a
power transformer have a need to know the elements of its equivalent circuit.
There is no simple and reliable way, however, to obtain all these elements from
the dimensions or design drawings. Fortunately, the elements of the approxi-
mate equivalent circuit can be determined from fairly simple tests that do not
require the transformer to be loaded.

In an open-circuit test a voltage source is connected to either one of the
terminal pairs, and the other terminal pair is kept open, i.e., no current is drawn
from it. Suppose the source is connected to the primary side and the secondary
side is opened. The most convenient diagram for this case is that of Fig. 5-9(a)
with I, =0 and, therefore, I, =0, because of the current ratio of the ideal
transformer. Thus the impedance Ze, carries no current, and the entire circuit



74 ELECTRIC POWER SYSTEM COMPONENTS

is reduced to the admittance

Il ocC

Y ® = ee— (5'58)
! Vl ocC

Three measurements are needed. Ammeter and voltmeter readings are the rms

values of current and voltage, and a wattmeter reading (which equals the core

losses) makes it possible to calculate the phase angle of the admittance. The

procedure is straightforward:

Lt oc
Y, =—— 5-59
%V oo 39

P,

cos 84 = (5-60
® Vi ocht oc )
Yo, =Yy, [8 (5-61)

where the negative angle (in the fourth quadrant) must be chosen. If desired,
the real and imaginary parts of Y;, can be obtained by

G, =Yg, cosfy (5-62)
Bm1 = Y¢ sin 0¢ (5-63)

1

The test may equally well be taken from the secondary side (i.e., with a
source connected to the secondary terminals and the primary terminals left
open). In that case, the best diagram to use is that of Fig. 5-9(d), and the
circuit is reduced to the admittance Y¢2 . Since Y¢2 = a’Y¢,1 , either one of the
two procedures may be used. It is important in either case, however, to use a
voltage source of rated magnitude because the admittances are nonlinear circuit
elements that would have different values at different voltages.

There remains the impedance Z, (or Z,, ) to be found. This can be done by
means of a short-circuit test. Again, a source is connected to one pair of termi-
nals but, this time, the other pair is short circuited. For instance, let the source
be connected to the secondary terminals and make ¥; = Q by means of a short-
circuit connection. The diagram of Fig. 5-9(c) shows that, in this case, the
voltage across Y, is also zero, and the circuit is reduced to the impedance

_V2 sC

Z 5-64
=1 (5-64)
Again, voltage, current, and power are measured and evaluated:
V.
Zez = _2sc (5-65)
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P,
cos§, = —=— 5-66
¢ Va scI 2 sc ( )
Z,,=Z,, [6e (5-67)
where the angle 8, is in the first quadrant. Then, if desired:
Re, =Z,, cosf, (5-68)
X,, =Z, sinf, (5-69)

As before, the test may just as well be taken from the primary side, whereby the
impedance Z,  is obtained. For sample calculations, see Example 5-4.

The impedances Z, and Z, are considered linear circuit elements, which
means they do not depend on the value of the voltage used for the short-circuit
test. The coils must not be overloaded too much, however, and, therefore, the
source voltage for the short-circuit test is limited to a small fraction of rated
voltage. This is so because the voltage drop across the impedance Z, , even
with currents in excess of rated values, is only a small fraction of the rated value
of ¥y, and the voltage drop across Z, is only a small fraction of the rated
value of V.

It is worth noting that an important advantage of using approximate
equivalent circuits for power transformers is, in addition to simplifying the
analysis of operating conditions, that two simple standard tests (open- and
short-circuit tests) are sufficient to obtain all the values of the elements of such
circuits.

5-10 NORMALIZED QUANTITIES

Physical quantities can be expressed in terms of their units, or in comparison to
a reference or base quantity. For instance, people’s height might be stated as
1.7 meters (m), 1.6 m, etc. Or, a height of, say, 2 m might be chosen as the base
quantity, and these people’s height would then be expressed as 0.85 per unit,
0.8 per unit, etc. (or as 85 percent, 80 percent, etc.). A quantity is thus
“expressed in per unit” when it is divided by the base quantity, which must have
the same dimension. By this operation, known as normmalization, quantities are
made dimensionless, and their per-unit values are often more significant than
their absolute values. Many readers have undoubtedly encountered this idea
before.

For power transformers, normalization is particularly useful. Rated apparent
power and rated voltages are chosen as base quantities. Since power, reactive
power, and apparent power are all of the same dimension, the volt-ampere rating
is used as the base for all these quantities.
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Pbase = Qbase =Ly base =Pa rated (5'70)
Vl base — Vl rated (5'71)
V2 base = Vz rated (5'72)

Consistently, the base currents must be

P

T} page = -2 (5-73)
Vl rated

I, = amted (5-74)
ase Vz rated

Finally, base impedances (and base admittances) are chosen to be consistent
with the previous choices:

- Vl base
Zl base Il base (5-75)
V.
Z2 base 12 :ase (5-76)
2 base

These bases are also valid for resistances and reactances, just as admittance bases
are valid for conductances and susceptances.

When all quantities are divided by their proper bases and thereby normalized,
all equations can be written in normalized form. As an example, take Eq. 5-25.
With all quantities appearing in that equation properly normalized, each term of
the equation is actually divided by V; , which leaves the equation intact. Example
5-5 illustrates the procedure, and shows its special advantages for transformer
calculations:

(a) The elements of an equivalent circuit represent imperfections, and, there-
fore should be small, but that is a relative term. Just how small is “small”?
Actually, an impedance of, say, Z, =1 § of a transformer may quite well be
more “imperfect” than one of 2  of another transformer with different ratings.
The answer becomes entirely clear when normalized values are used. All imper-
fections must be much less than unity, and the lesser the better, regardless of
ratings.

(b) Due to the different bases on the two sides, the ideal transformer that is
part of every equivalent circuit becomes a 1:1 transformer when normalized
values are used. So it may be simply omitted (except when the physical separa-
tion of the two sides is relevant). No quantity needs to be referred to one or the
other side any more; their normalized values are the same no matter which side
they are on. For instance, in per-unit values,Z, =Z, ,etc.
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(c) Some quantities take on added significance when they are normalized.
From Fig. 5-9(a) or (c) (the two are identical for normalized quantities), we see
that Z, (notice there is no longer a subscript 1 or 2) is also the voltage drop
across that impedance at full load (i.e., when 7, = 1.0 per unit), and its real part
R, also equals the full-load copper losses. Similarly, using the diagram of Fig.
5-9(b) or (d), the admittance Y is also the no-load current, and its real part G,,
also equals the core losses (both for ¥, = 1.0 per unit).

(d) Regulation and efficiency (themselves two dimensionless quantities) are
more easily calculated when the circuit elements and the load current are given
in normalized form. For the calculation of both, the output voltage is assumed
to be at rated value (thus, ¥, = 1.0 per unit), and for the calculation of regula-
tion (and of full-load efficiency), the output current has rated value (Z, = 1.0
per unit).

The use of normalization is not limited to the study of one single transformer.
In fact, entire power systems, consisting of many generators, transformers, trans-
mission lines, and loads, can be analyzed in normalized form, with one base
power chosen and consistently used.

5-11 AN ALTERNATIVE: MUTUAL INDUCTANCE

In the study of electromagnetic devices, in this book and elsewhere, extensive
use is made of equivalent circuits that are derived from physical descriptions of
these devices. Such descriptions consider such phenomena as energy storage and
electromagnetic induction, and they involve not only electric quantities (voltages
and currents) but also magnetic ones (mmfs and fluxes).

It is also possible to describe electric circuits coupled by magnetic fields by the
abstract tool of circuit analysis, in terms of self- and mutual inductances. It is as
if there were two entirely different languages in which the same facts could be
stated. Surely an intelligent reader is entitled to know how to translate from one
such language into the other, and what should determine a preference for one
or the other.

In the approach of abstract circuit analysis, a transformer is described by a
diagram like that of Fig. 5-12, with arbitrarily chosen current arrows, polarity
marks, and dots. The equations that correspond to this diagram are

di d12

v, =Ryiy +L, Et_l -M 2 (5-77)
o diy _ di,
v =M—' =Ry - Ly (5-78)

On the other hand, the physical approach leads to an equivalent circuit like
that of Fig. 5-5. Since the notation in that diagram is for sinusoidal steady state
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Fig. 5-12. Mutual inductance.

only, the diagram is redrawn in Fig. 5-13 with appropriate notation, and with
one change: the core loss conductance is omitted because the circuits approach
does not consider core losses. The inductive element related to the main flux is
given a new symbol Ly. This inductance is related to the susceptance B,, by
the equation

1
=- — 5-79
Now the induced voltage e; can be expressed in terms of currents:
d [, I
ey =L¢, (_Z? (11 - —a—) (5'80)
and the voltage equations can be read from the diagram
. di . di, Ly dip
U =RyIy +L11‘Jt_1+en=R111+(L11+L¢)‘8?‘;QE‘; (5-81)
e . dl2 L d11 . L¢ d12
Ug=;l‘_R212_L21 E‘=_ae —J{'“R212_<L21+7 -(—{t_ (5'82)

These two equations are identical with Eq. 5-77 and 5-78 if the following sub-
stitutions are made:

L
M==2 (5-83)
a
] 1
L, R Ly Ry Ly 2,
——NMA—TT NAN—T—
+ L ot +
21 L¢ (] % ey vy
Ideal
a:1

Fig. 5-13. Back to the basic equivalent circuit.
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Ly=Ly,+Ly (5-84)
L
Ly=Ly+ ;—;’i (5-85)

This constitutes the promised “translation” between the two approaches, which
are thereby shown to be identical, with the exception of the core losses for
which the circuit approach is not well suited.

And yet, there is a big difference. It lies in the nonlinearity of the magnetic
circuit. The three inductances in Eqgs. 5-77 and 5-78 are nonlinear circuit ele-
ments, so much so that their values may change by several orders of magnitude
for changing currents. In other words, for coupled circuits using ferromagnetic
cores, these two equations are not suitable for numerical evaluations.

It is indeed a big advantage of the descriptive approach that it leads to an
equivalent circuit like that of Fig. 5-13, in which the only nonlinear element,
the fictitious inductance L, is shunted into an auxiliary branch, away from the
main current paths. Even better, for a power transformer, the current through
this element has an amplitude practically independent of the load, so that a con-
stant value of Ly (or B,,) can be assigned to that element. So this method is by
far superior to that of abstract circuit analysis for the study of power trans-
formers or other devices based on similar principles. Nevertheless, for the study
of devices without ferromagnetic cores, sets of linear equations resulting from
the circuits method are more systematic and often easier to handle.

5-12 EXAMPLES
Example 5-1 (Section 5-6)

A transformer is rated 10 kva, 2400/240 v, 60 Hz. The parameters for the ap-
proximate equivalent circutt of Fig. 5-9(a) are:

Yy, =G, +jB,, =12.5-j28.6=31.2/-66.4° ymhos
Z., =R, +jX, =84+]13.7=16.1/58.5° ohms

Find the voltage regulation for operation with rated load and power factor of
0.8 lagging.

Solution

We plan to use Eq. 5-48 to find ¥;. For this purpose, we first have to find the
rated current.

Byrated = Timatea = 10,000/2400 = 4.17 amp
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Choose I, as the reference. Either this or ¥, may be chosen. It is a matter of
personal preference.

Lja=1,=417/0°=4.17 + 0 amp
The power factor angle is
6 =cos™' (0.8) =369°
The voltage V, leads the current I, by this angle.
aV, =2400/36.9° = 1920 +j 1440 volts
The voltage across the equivalent impedance is
Z, 1, =(8.4+j13.7)(4.17 +70) = 35 +j 57 volts

The terminal voltage on side 1 is found from Eq. 5-48.

Vi =aV, +Z, I; = 1955 + 1497 = 2462 [37 4° volts
Use only the magnitudes in Eq. 5-50 to find the voltage regulation.

_Vi-aV, 2462- 2400
== o0 -00258

Example 5-2 (Section 5-7)

The transformer of Example 5-1 is operated with rated load and power factor
of 0.8 leading. Find the efficiency.

Solution

We plan to use Eq. 1-4 to find the efficiency. We do not solve for all of the
values in Fig. 5-9(a). We work with rated quantities as being close enough for
this computation of efficiency. The rated load current is

al} rated = Dorateq = 10,000/240 = 41.7 amp
The output power is
Pyt = VoI, cos 6 =(240) (41.7) (0.8) = 8000 w

Use Eq. 5-52 to find the copper losses. Since R, is given, it is convenient to
use

I, =1, =I,Ja=4.17 amp

Py =112Re1 =(4.17)? (8.4)= 146w
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A measured value of core losses is often available and can be used. In this prob-
lem, G, is given so we use Eq. 5-53 to find the core losses. We use Vi ~ V) p1e4.

P, =G, V=(12.5X1075) (2400)> =72 w
The summation of losses is
Py =Pr +P.=146+72=218w
Use Eq. 1-4 to find the efficiency.

. Puss 28
n=l- P 7 Bo00+218 0073

Example 5-3 (Section 5-7)

All-day efficiency is defined to be the ratio of energy output to energy input
for a 24-hour period. The 10-kva transformer of Example 5-1 is operated for
24 hours a day. Loads during the day are: 10 kva at 1.0 P.F. for 3 hours; 6 kva
at 0.8 P.F. lag for 5 hours; no load for 16 hours. Find the all-day efficiency.

Solution

The given conditions of this problem make it simple to evaluate the integrals in
Eq. 5-57. The output energy is

Wout =(10X1.0)X 3+(6X 08)X 5+0X 16=54kwh
The core losses are constant for the full 24 hours. The energy into core losses is
W, =(72/1000) X 24 = 1.728 kwh

During 3 hours, the copper loss is

_ (10,000\2 _
Pg = (2400 ) (8.4)/1000 = 0.146 kw

During S hours, the copper loss is

6000
Pr = (2400> (8.4)/1000 = 0.053 kw

During 16 hours, the copper loss is
PR =0
The energy into copper losses is

Wg =(0.146) X 3+(0.053) X 5+ (0) X 16 =0.703 kwh
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The denominator of Eq. 5-57 is the energy input during the period.
Win = Wout + Wg + W, =54+ 1.728 + 0.703 = 56.431 kwh
The energy efficiency for the full 24 hours is
Mw = Wout/Win = 54/56.431 = 0.957

Example 5-4 (Section 5-9)

Test data for a 10-kva, 2400/240-v, 60-Hz transformer are as follows: open-
circuit test, with input to the low side, 240 v, 0.75 amp, 72 w; short-circuit test,
with input to the high side, 80.5 v, 5.0 amp, 210 w. Find the parameters for
the approximate equivalent circuit in Fig. 5-9(a).
Solution
Turns ratio =a = 2400/240 = 10

I tateq = 10,000/2400 = 4.17 amp

D ateq = 10,000/240 = 41.7 amp

Since the input for the open-circuit test is measured into the low side, it is con-
venient to work with Fig. 5-9(d). The admittance is

Yy, =Loc/Vaoe =0.75/240 =3.12 X 107 mho
The angle of the admittance is found by
08 0 =Poc/(Vaocl2oc) = 72/(240 X 0.75) = 0.4
0 =cos™ (0.4) =-66.4°
The conductance is
G, =Y, cos64=125X10" mho
The susceptance is
By, =Y, sinf;=-2.86X 107 mho
In Fig. 5-9(a) these quantities are referred to the high side.
Yy, =Yy, /a* =312/-664° =12.5 - j 28.6 umho

Since the measurements for the short-circuit test are made into the high side
winding, Fig. 5-9(b) is applicable. The impedance is

Z, =Vigllhs =80.5/5=161Q
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The angle of the equivalent impedance is found by
cos 0, = Py [Vige 15 =210/(80.5) (5) =0.522
0, =cos™(0.522) = 58.5°
The equivalent resistance is
R, =Z, cosf, =841
The equivalent reactance is

Xe, =Z,, sinf, =13.7Q

Example 5-5 (Section 5-10)

(a) Repeat Example 5-4, using per-unit values. (b) Find the regulation for a
power factor of 0.8, this time leading. (c) Find the efficiency at Aalf load and a
power factor of 0.8.
Solution
First establish the bases: Py, = Pypase = 10,000 va.
Vivase = 2400V, Vypase =240 v
I1pase = 10,000/2400 = 4.17 amp
Lypase = 10,000/240 = 41.7 amp
Convert all test data into per-unit values
Voo =240/240=1 pu
1, =0.75/41.7=0.018 pu
P,.=72/10,000=0.0072 pu
V. =80.5/2400 = 0.0335 pu
1,.,=50/417=12pu
P,. =210/10,000 =0.021 pu

Note that there are no subscripts indicating “primary” or “secondary” for per-
unit values.

(a) The procedures of Example 5-4 are repeated with pu values.
Y, =0018/1=0.018 pu
cos 6,4 =0.0072/(1 X 0.018) =04
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Being a dimensionless number, it must be the same as that obtained in the
previous example. So are

0,5 =-66.4° and sin 0 = -09165
G, =0.018 X 0.4=0.0072 pu
B,, =-0.018 X 0.9165 =-0.0165 pu
Y, =0.018/-66.4° =0.0072 - j 0.0165 pu
Z, =0.0335/12=0.0279 pu
cos 6, = 0.021/(0.0335 X 1.2) =0.522
0, =58.5°,sin 6, = 0.853
R, =0.0279 X 0.522 = 0.01456 pu
X, =0.0279 X 0.853 =0.0238 pu
Z,=0.0279/58.5° =0.01456 +j 0.0238 pu

These values can be checked against those obtained in the previous example
by using the admittance and/or impedance bases. For instance

Z 1 pase =2400/4.17=576 Q
and
Z, = 16.1/576 = 0.0279, etc.
(b) Use the method of Example 5-1
I, =1/0° pu
V, =1/-369° pu

(For a “leading” power factor, the voltage lags the current), thus V, =
0.8-70.6 pu.

Z.1, =0.0146 +70.0238 pu

Add these two phasors to get V; = 0.8146 - j 0.576 = 0.9876/-35.3°. So the
regulation is (0.9876 -1)/1 = -0.0124 (negative, due to the leading load).
(c) At half-load,

12 =0.5 pu
Py =1X05X08=04pu
P.=0.018 X 1% =0.018 pu (equals G,)
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Pg =0.01456 X 0.5% = 0.00364 pu
Piogs = 0.018 +0.00364 = 0.02164 pu

So the efficiency is

5-13
5-1.

5.4,

5-5.

5-6.
5-7.

5-8.

5-9.
5-10.

n=0.4/(0.4 +0.02164) = 0.949

PROBLEMS

The transformer in Fig. 5-2 has a sheet steel core. The mean length of the
flux path is 0.7 m. The effective cross-sectional area is 0.005 m?. Wind-
ings a-b and c¢-d are connected to electric circuits. Ny,_p) =80 turns;
Ny(c-gy = 160 turns. At the instant when flux is 0.006 webers, the cur-
rent flowing into terminal 4 is 63 amp. Neglect core losses. (a) Find the
magnetizing mmf at this time. (b) Find the magnitude and direction of
the current in coil ¢c-d at this time. (c) Find the ratio of I, /I;. Compare
this to the turns ratio N, /N, .

The parameters of a transformer are: a = 2.5,R, =007 £, X, =0.20 Q,
R, =001 &, X; =0025 Q, G, =0.0005 mho, B, =-0.0025 mho.
This transformer is operated with ¥, =220 v, I, =91 amp, and the power
factor is 0.85 lagging. Find I, and Vi, using I, as the reference. Use the
basic equivalent circuit of Fig. 5-5.

Solve Problem 5-2 using the approximate equivalent circuit of Fig. 5-9(a).

Test data for a 10-kva, 2300/230-v, 60-Hz transformer are as follows:
open-circuit test, with input to the low side, 230 v, 0.62 amp, 69 w;
short-circuit test, with input to the high side, 127 v, 4.9 amp, 263 w. Find
the equivalent circuit parameters R, , X, , G, , Bp, -

For the transformer in Problem 5-4, find the voltage regulation when
operated with load on the low voltage side of 230 v, 43.5 amp, power
factor of 0.8 lagging.

Find the efficiency for the operating conditions in Problem 5-5.

Test data for a 30-kva,2400/240-v, 60-Hz transformer are as follows: open-
circuit test, with input to the low side, 240 v, 3 amp, 230 w; short-circuit
test, with input to the high side,100 v,18.8 amp, 1050 w. Find the equiv-
alent circuit parameters R, , Xe , Gc, . Bpm, -

For the transformer in Problem 5-7, find the voltage regulation when
operated with 240 v, 125 amp, power factor of 0.6 leading, load on the
low voltage side.

Find the efficiency for the operating conditions in Problem 5-8.

A 30-kva transformer has core losses of 230 w and copper losses of 320 w
when operated at rated voltage and rated kva. This transformer is con-
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5-11.

5-12.

5-13.

5-14.

5-15.

5-16.
5-17.

5-18.

5-19.

5-20.

5-21.

5-22.
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nected for 24 hours a day. Loads during the day are: 30 kva at 0.8 P.F.
lagging for 3 hours; 20 kva at 0.6 P.F. lagging for 6 hours; and no load for
15 hours. Find the all-day efficiency.

A transformer is rated 5 kva, 220/110 v, 50 Hz. For rated operating con-
ditions it has hysteresis loss of 30 w, eddy-current loss of 30 w, and copper
loss of 80 w. If this transformer is used in a 60-Hz installation, 220/110 v,
find the available load kva such that total losses remain at 140 w.

The transformer in Problem 5-11 is to be used in a 50-Hz system with
voltage of 110/55 v. Find the permissible load current such that total
losses remain at 140 w.

The transformer in Problem 5-7 is operated at rated voltage and rated
frequency. Find the maximum efficiency.

A 5-kva, 330/220-v, 60-Hz transformer has the 220-v winding shorted.
With 6.3 v impressed on the 330-v winding, the input power is 50 w and
the input current is 15 amp. If a short-circuit test is performed with the
input to the 220-volt winding with the 330-volt winding shorted, find the
impressed voltage and input power for a current of 24 amp.

A 5-kva, 330/220-v, 60-Hz transformer is tested with the 330-v winding
open. With 220-v impressed, the input power is 40 w and the current is
0.4 amp. If this transformer is operated with the 220-v winding open and
with 330 v impressed on the high-voltage winding, find the input power
and the no-load current.

For the transformer in Problem 5-7, find R, , X, , G. ,Bp, in per-unit.
For the transformer in Problem 5-7, use the per-unit method to find the
voltage regulation for a power factor of 0.9 lagging.

For the transformer in Problem 5-7, use the per-unit method to find the
efficiency for rated load conditions and with power factor of 0.9 lagging.
A transformer, rated 50 kva, has copper losses of 400 w when operated at
80 percent of rated current. (a) Find the value of the equivalent resis-
tance in per-unit. (b) If maximum efficiency occurs for operation at 70
percent of rated current, find the core loss in per-unit.

For the transformer in Problem 5-7, assume X; =2.20Q and X, =0.022 2.
Find the inductances L, L,, and M. Find the coefficient of coupling,
k=M / \/L1L2 .

A transformer has the following parameters in per-unit: Z, =0.01 +;j 0.02
pu,Z, =001 +;0.04 pu, Y, =0.01-;0.05 pu. (a) Find the coefficient
of coupling. (b) For a load current of 0.7 pu, with power factor of 0.8
lagging, and rated load voltage, find the input voltage in per-unit.

The purpose of this problem is to compare the transmission of electric
energy at two different voltages. It is desired to deliver 24 kw at 240 v
into a resistance load that is at a distance of 2 km from the available
source. Transformers may be considered to be ideal. Two systems are
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. I; =100 amp
08 +j208Q i

Fig. P-5-22(a).
I; = 100 amp
110 +7230 Q —_—
+
% V, =240y SR, =240
o
Ideal

Fig. P-5-22(b).

shown in Fig. P-5-22(a) and (b). For each system, find the efficiency and
the value of no-load voltage at the load terminals.
5-23. The load resistance of 2.4 £ is supplied through a transformer and a trans-

I, = 100 amp
-

Izezl
L2l gs'vj0a o

Ve é VL=24OV§2.4Q

Fig. P-5-23(a).
110 + 7230 f, = 100 amp
] ———
Z L
122
+ +

24 Q

<~> Vs Yo, V, =240 v

A%

Fig. P-5-23(b).
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mission line. In each of the systems described by Fig. P-5-23(a) and (b),
respectively, the transformer has a turns ratio (left to right) of 100:1, and
its parameters, referred to the low-voltage side, are Ze2 =01+70.2 Q,and
th,2 =0.005 - j 0.015 mhos. For each of the two systems, find the mag-
nitude of the voltage at the source terminals, and the transmission effi-
ciency (load power over source power).



6
Transformer Connections

6-1 AUTOTRANSFORMERS

The transformer described in Chapter 5 accomplishes not only the transfer of
power between power system components operating at different voltages, but
also the electrical isolation of these components from one another. There are
many cases when this latter feature is quite important. For instance, considera-
tions of safety in case of accidental failure demand that low-voltage load circuits
be physically separated from high-voltage transmission lines. But in many other
cases, particularly when the two different voltages are in the same order of
magnitude, that separation is not needed, and in these cases, considerable savings
in both cost and operating expenses can be accomplished by using transformers
in which the primary and secondary circuits are connected to each other to form
an autotransformer circuit.

Consider the circuit diagram of Fig. 6-1. It can be considered either as two
coils connected to each other, or as a single coil with a tap (i.e., a connection
from inside the coil to a third terminal). The latter view is the one that gives
rise to the name autotransformer. Aufo is Greek for self (as in automobile—that
strange horseless carriage that seems to move by itself), and the single winding
acts as a transformer all by itself. For purposes of analysis, however, it is prefer-
able to view the autotransformer as consisting of two coils, called S (for series)
and C (for common). Coil § is in series with the source (or with the load, in
Fig. 6-2), and coil C is common to both the primary and the secondary circuits.
Of course, the two coils are wound around the same ferromagnetic core.

To study the principles of the autotransformer, all of its imperfections (mag-

Iy

Fig. 6-1. Step-down autotransformer.

89
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Fig. 6-2. Step-up autotransformer.

netizing current, core losses, leakage fluxes, and coil resistances) will at first be
disregarded. Also, the discussion will be limited to sinusoidal steady state.

Connecting the two left-side (primary) terminals of either Fig. 6-1 or Fig. 6-2
to a voltage source determines the value of the flux in the core, in accordance
with Eq. 4-25, with the number of turns between these two terminals substi-
tuted for N. This alternating flux causes the same voltage to be induced in
every turn that is wound around the core. Therefore, calling the turns numbers
of the two coils Ng and N, respectively, the ratio of voltage phasors is

VH _ NS +NC
vV, Ne (6-1)

where the subscripts H and L stand for higher voltage and lower voltage. In the
case of Fig. 6-1, the primary (input) voltage is higher than the secondary (out-
put) voltage, but the autotransformer can just as well be used to step the voltage
up rather than down, as in Fig. 6-2. Equation 6-1 is valid in either case.

Now, to get the current ratio, remember that an ideal transformer must have
zero ampere-turns for a finite flux. In the following equations, as well as in the
two diagrams, the subscripts H and L are consistently used to indicate the higher
voltage and lower voltage side. Thus, the current Ij; is the current on the high
voltage side (and is identical with the current through coil ), regardless of the
fact that it is actually smaller than I; . Use either Fig. 6-1 or Fig. 6-2.

F=IyNg-IcNc-=0 (6-2)
and eliminate the current I by Kirchhoff’s current law
Iy +lc=1g (6-3)
This leads to
IgNg - (g - Ig)Ne =1g(Ng +N¢) - I, Nc =0 (6-4)
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and, thus, to the ratio of current phasors

Iy Ne
I, Ng+Nc (65)

which is the reciprocal of the voltage ratio, just as in the regular transformer with
two separate coils. Note that the ratio is a real number, which means I; and I,
are in phase. Thus Eq. 6-3 is also valid for magnitudes

IC=IL—IH (6-6)

Example 6-1 illustrates all these relationships.

To demonstrate the advantages of the autotransformer, let Fig. 6-3 be under-
stood to represent a two-coil transformer for the same voltages and currents as
the autotransformer of Fig. 6-2. For the sake of easier comparison, assume both
transformers have identical iron cores.

The common coil of the autotransformer requires as many turns as the low-side
coil of the two-coil transformer, but it may be made of thinner wire because it
has to carry Io amperes, which, as Eq. 6-6 shows, is less than the current I},
carried by the low-side coil of the two-coil transformer. The series coil of the
autotransformer carries as much current as the high-side coil of the two-coil
transformer, but it consists of fewer turns since its voltage Vi - ¥V, is less than
Viz. Sothe two coils of an autotransformer are smaller, lighter, and thus, cheaper
than those of an equivalent two-coil transformer. In addition, due to their
smaller size, they require less space; so the length of the core may also be re-
duced for a further saving.

It is also possible to compare an autotransformer to a two-coil transformer
made of the same core and coils, without the interconnection of the coils. Again,
the autotransformer comes out ahead in value. The reader is referred to Ex-
ample 6-2 for a numerical illustration.

Fig. 6-3. Two-coil transformer.
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Ideal
Fig. 6-4. Approximate equivalent circuit of autotransformer.

The differences are particularly pronounced when Nq > Ny, i.e., when the
voltage and current ratios are not too far from unity. It is rather fortunate that
the autotransformer is most advantageous in those cases in which the separation
of the primary from the secondary side is usually not required. Typical examples
are transformers that serve to adjust load voltages that would otherwise vary
with load changes (the number of turns on one side is slightly altered by means
of switches). By contrast, there are cases when the primary and secondary
voltages are of different orders of magnitude. In these cases, the separation is
often necessary, but they are just the cases when the differences in cost are
much smaller anyway.

The imperfections of an actual (not ideal) autotransformer can be considered
just like those of a two-coil transformer, in terms of an approximate equivalent
circuit. For example, the circuit of Fig. 6-4 is similar to that of Fig. 59a, but
with an ideal autotransformer. The parameters of such a circuit can be ob-
tained from open- and short-circuit tests.

It is also of interest to compare these parameters to those that describe the
two-coil transformer consisting of the same core and coils. For this purpose,
Fig. 6-5 gives the equivalent circuit of this two-coil transformer, with the ad-

b
L
a I Z(’z l Oc
[ I}
Vl Y(Dl Nl Nz V2
bhO— Ideal —=0d
a:1

Fig. 6-5. Transformer with imperfections.
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—O b
Fig. 6-6. Autotransformer with imperfections.

mittance Y referred to the primary side and the impedance Z, to the secondary
side. In Fig. 6-6, the same coils are reconnected to form an autotransformer,
the original primary coil becoming the common coil, and the original secondary
coil becoming the series coil.

Let the low-side terminal voltage ¥ of the autotransformer be the same as
the primary terminal voltage ¥; of the two-coil transformer. This requires that
the flux be the same, which in turn calls for the same magnetizing current and
the same core losses. Therefore, the admittances Yy, in the two diagrams must
also be the same. To formulate this as a general rule,

the magnetizing admittance of the autotransformer, referred to its low-voltage
side, equals the magnetizing admittance of the two-coil transformer referred to
that side that becomes the common coil in the reconnection.

Now consider the equivalent impedance in Fig. 6-5. It represents the combined
resistances and leakage reactances of the two windings. The voltage across it is
the phasor difference between the actual secondary terminal voltage V, and its
ideal value V;/a. When the load of the autotransformer of Fig. 6-6 is adjusted so
that its current Ig is equal to the current 7, drawn by the load of the two-coil
transformer, then both coils carry the same current in Fig. 6-6 as they do in
Fig. 6-5. Consequently, the voltage drops across their imperfections are the
same, which makes the equivalent impedances equal to each other. As a general
rule,

the equivalent impedance of the autotransformer, referred to its high-voltage
side, equals the equivalent impedance of the two-coil transformer, referred to
that side that becomes the series coil in the reconnection.

These parameters can also be referred to the other side, by being multiplied by
the square of the proper turns ratio. Observe that this is not the turns ratio a of
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the two-coil transformer, but the ratio appearing in Egs. 6-1 or 6-5. For instance,
to refer the equivalent impedance Z,, of Fig. 6-6 to the low-voltage side, it must
be multiplied by the voltage ratio and divided by the current ratio. Thus

2
Z, = (__NL Z, (6-7)
1 NS +NC 2

Similarly, to refer the admittance from the low- to the high-voltage side

Y, = ——-J-VC—ZY 6-8
% \Ng+Nc) * (6-8)

The reader is advised never to memorize such equations, but rather to consider
that impedances must be larger when referred to the high-voltage side, and ad-
mittances must be larger when referred to the low-voltage side.

The equivalent circuit of Fig. 6-6 (or that of Fig. 6-4) permits a comparison
of the regulation and efficiency of the autotransformer to those of the two-coil
transformer made of the same core and coils. The full-load voltage drop across
Z,, is the same in Fig. 6-5 and 6-6, but in Fig. 6-6 it is a smaller fraction of the
output voltage. Similarly, the power losses for a given fraction of rated load are
the same in both circuits, but those for the autotransformer are a smaller
fraction of the output power. On both counts, the autotransformer wins the
competition. Its advantage is the more pronounced, the more the turns number
N¢ exceeds the turns number Ny.

6-2 SINGLE-PHASE POWER

This section and the following two are inserted here as a review of subjects with
which the reader should be familiar before he reaches the discussion of three-
phase power transformation.

Since power systems need transformers, (see Section 1-3), they must use
alternating voltages and currents. This raises the question of how a uniform flow
of power can be obtained. The instantaneous value of power is the product of
the instantaneous values of voltage and current

p(®) =v(1) i(t) (69)
Let voltage and current be sinusoids, and form the product
p(t) = Vinax cos(wt +a) I, cos(wt + ) (6-10)
The product of two cosines can be converted according to the formula

cos x cos y = 5 [cos(x + ) + cos(x - y)] (6-11)
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Fig. 6-7. Single-phase power.

resulting in the expression

Venax 1.
p(H)= —'—“%——ﬁa—x— [cos(2wt +a + ) + cos(a - B)] (6-12)
Finally, substitute the rms values V = Vo /A/2 and I = I, /N/2, and the phase
difference 6 =a - f

p() = VI cos(Qwt + a + B) + VI cos 6 (6-13)

Figure 6-7 shows the wave shape of the function p(¢) for arbitrary values of VI
and @, and with the axis of reference chosen for the sake of convenience to make
a + 3 =0. The power is seen to be pulsating at twice the frequency of voltage and
current, thus becoming negative twice during every period. This is particularly
undesirable for electromechanical power conversion where the pulsating action
causes vibration and noise. None of this happens when the electric power is that
of a balanced three-phase power system. The idea is to add three curves like
that of Fig. 6-7, displaced against each other by one-third of a period but other-
wise identical. The three pulsating components add up to zero, and the total
power is a constant. The rotating magnetic field that will be encountered in
later chapters is a manifestation of this fact.

6-3 REVIEW OF THREE-PHASE CIRCUITS

The authors hope that the contents of this section are familiar to the readers,
but they believe that some will find a brief review helpful.
A three-phase source is a set of three single-phase sources whose voltages are
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sinusoids of equal amplitude and frequency, displaced against each other by
120° which is one-third of a period. For instance:
U1 (2) = Vipax cos wt
0, (1) = Vipax cos(wt - 120°) (6-14)
U3(8) = Vipax cos(wt - 240°)

where the phase sequence is 1-2-3 because v, follows v,, etc. In terms of rms
phasors

vV, =V/[0°
V, =V /-120° (6-15)
V; = V[-240°

It should be mentioned right here that the sum of three such symmetrical
quantities—voltages, currents, or whatever else—is always zero. This can be seen
by adding the three Eqs. 6-14 or the three Eqs. 6-15, either analytically or
graphically.

There is no difficulty in obtaining three such voltages in one generator, as later
chapters will make clear. But it would be far too uneconomical to transmit
three-phase power to the loads if each phase required its own two transmission
wires. Instead, the three circuits must be interconnected. There are two basic
connections, the delta and the wye. Figure 6-8 shows that, by interconnecting
three-phase sources, in both cases the number of line terminals is reduced from
six to three (a, b, ¢) although, in the case of the wye connection, a fourth
terminal, the neutral, is also available, if desired.

._Vl+

%

— -+

O
g

——V3+

:

(€)] - n
(b)
Fig. 6-8. Three-phase sources: (a) delta; (b) wye.



TRANSFORMER CONNECTIONS 97

An important distinction is to be made between the phase voltages (for sources,
these are the voltages across each source) and the line voltages (these are the
voltages between each pair of line terminals). For a delta connection, this dis-
tinction is trivial because the two are the same (see Fig. 6-8a)

Vl = Vab
Va = Ve (6-16)
V3 = Vca

which may be written as a single equation with subscripts P for phase and L for
line
V. =Vp (6-17)

For a wye connection, however, Fig. 6-8b shows that the phase voltages are
the voltages to neutral

Vi =V
V2 = Vi, (6-18)
V3 =V,

and the relation between each line voltage and the nearest phase voltage, found
by application of Kirchhoff’s voltage law (Fig. 6-9) is

V., =+/3 Vp [£30° (6-19)

where the choice of the plus or minus sign depends on the phase sequence.

Fig. 6-9. Line and phase voltages for wye connection.
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|
[]

(2) (b)
Fig. 6-10. Three-phase loads: (a) delta; (b) wye.

All of this has concerned voltages. Currents depend on loads. Figure 6-10
depicts three-phase loads in delta and wye connections, using steady state nota-
tion. Either one of the two configurations can be connected to the source
terminals a, b, c regardless of whether the sources are delta- or wye-connected.
If both the sources and the loads are wye-connected, their neutrals may be
(and sometimes are) connected to each other, forming a four-wire system, as
shown in Fig. 6-11.

Similar to the distinction between line voltages and phase voltages, there are
line currents (in the three lines a, b, ¢ connecting the source terminals to the load
terminals) and phase currents (in each of the three loads) to be kept apart. Ina

1

f\__"-
/

0 [

1y
o=

Fig. 6-11. Four-wire system.
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N

Fig. 6-12. Line and phase currents in delta-connected loads.

wye-connected load, line currents are the same as phase currents (see Figs. 6-10b
or 6-11).

I, =Ip (6:20)

If there is a neutral conductor as in Fig. 6-11, it carries the “return current”
Iy which, in the case of a balanced load (three identical leads in delta or wye)
is zero.

In a delta-connected load, the three line currents are related to the three phase
currents in accordance with Kirchhoff’s current law. For a balanced load, the
steady state relation between any line current and the nearest phase current (see
Fig. 6-12) is

IL =\/§Ipl¢30° (6'21)

with the plus or minus sign depending on the phase sequence.
Table 6-1 is a recapitulation of the magnitude relations in balanced three-phase
systems.

Table 6-1.
A Y
L Vp V3V
1y, V31ip Ip

6-4 THREE-PHASE POWER

Let the instantaneous power expressed by Eq. 6-13 and depicted by Fig. 6-7
represent the power in phase 1 of a balanced three-phase circuit, with ¥ and /
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representing the rms values of the phase voltages and phase currents. Then the
power for the other two phases can be obtained by substituting ot - 120° and
wt - 240°, respectively, for wt, and the total power for the three phases be-
comes

P(D3phase = VpIp [cos(2wt + o+ B) + cos(2wt + a + B - 240°)
+cos(Qut +a+ - 480°)] +3Vplp cos§ (6-22)

The bracket in this equation is the sum of a symmetrical set of three sinusoids
(because -480° is the same as -120°), which was previously recognized to equal
zero. Thus

" P(t)3phase = P3phase = 3VpIp cos 6 (6-23)

which means that this power is not pulsating. In a balanced three-phase system,
energy is generated, transmitted, and consumed at a uniform rate.

Equation 6-23 expresses power in terms of phase quantities (Vp and Ip), which
is not really useful when the connection (delta or wye) of sources or loads is not
known. But power can equally well be expressed in terms of line quantities.
The product Vplp equals, for a delta connection, ¥z (I1/+/3), and, for a wye
connection, (¥ /+/3)1;, which is exactly the same thing. Substitution into
Eq. 6-23 yields

P 3phase \/—3T Vi 15, cos 6 (6-24)

which is usually the more convenient expression to use. It must be kept in mind,
though, that 8 remains the angle between phase quantities, never that between
line quantities.

Similar reasoning leads to expressions for reactive power and apparent power
in terms of either phase or line quantities for balanced three-phase circuits:

Qsphase = -3VpIpsin 0 =~/3 VI, sin 0 (6-25)
and
Pysphase =3Vplp =3 VLI, (6-26)
Finally, complex power in a balanced three-phase circuit remains
P,=P+jQ=P,[-6 (627)

6-5 TRANSFORMATION OF THREE-PHASE POWER

The transmission of three-phase power from generators to loads requires the use
of transformers, just as that of single-phase power. Transformation of three-
phase power can be accomplished with three transformers (also called a bank of
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Fig. 6-13. Primaries in delta, secondaries in wye.

transformers) whose coils must be interconnected to permit their connection to
the line terminals. Using the basic configurations, delta and wye, for the trans-
former primaries and secondaries, provides a choice among four possibilities.

There are several factors to consider in choosing. First, there may be the
desire to use a neutral conductor. For instance, there may be single-phase loads
calling for voltages of different magnitudes, like domestic lights and appliances
for 120 v, and tools or large air conditioners for /3 120 = 208 v. This would ne-
cessitate the use of wye-connected transformer secondaries, as shown in Fig. 6-13,
where the primaries are delta-connected. In this diagram, each of the three
transformers is drawn inside a broken outline.

A neutral conductor may also be needed on the primary side, e .g., for protec-
tion of an overhead transmission line against lightning. In this case, the trans-
former primaries must be wye-connected. Further purposes of neutral conduc-
tors can be to provide a path for the “return current,” in the case of unbalanced
loads, or for certain harmonics, in the case of nonsinusoidal currents drawn by
nonlinear load elements.

The choice of transformer connections also has a bearing on the ratio of line
voltages. The turns ratio of each of the three transformers is the ratio of their
phase voltages, and a wye connection raises the line voltages to /3 times as
much. Therefore, a transformer bank with primaries in wye and secondaries in
delta helps to step down the line voltages, etc.

A bank of three transformers can be replaced by a three-phase transformer,
which consists of three primary and three secondary coils wound around dif-
ferent legs of a three-leg magnetic circuit. That permits a saving of core material
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and is thus, cheaper than a transformer bank; although it is cheaper, of course,
to replace one out of three single-phase transformers than an entire three-phase
unit. Also, for extremely large ratings, it becomes impractical to transport three-
phase units.

6-6 EXAMPLES
Example 6-1 (Section 6-1)

Two coils wound around a core have 1000 and 3000 turns, respectively. Con-
nect a 400-v source across the series connection of these coils, and a 5-Q resis-
tance across the 1000 turns coil. (2) Find the voltages across each coil. (b) Find
the currents in each coil. (c) Find the input power and the output power of this
autotransformer. Consider the core and coils ideal.

Solution

Refer to Fig. 6-1. The 1000 tumns coil is the common coil, the other the series

coil.
Ve = (1000/4000) X 400 =100 v =V,

Vs =(3000/4000) X 400 =300 v
I; =100/5 =20 amp
Iy =I5 =(1000/4000) X 20 =5 amp (from Eq. 6-5)
I~ =20 -5 =15 amp (from Eq. 6-6)
Because of the resistive load, all power factors are unity. Thus
Py, = Vyly =400 X 5=2000 w
Py =V I =100 X 20 =2000 w

In an ideal transformer, these two quantities must be equal.

Example 6-2 (Section 6-1)

A 20%kva load is to be supplied at 500 v. An ideal step-up autotransformer is
used to connect this load to a 400-v source. Find (a) the voltage and current of
the series winding, (b) the voltage and current of the common winding, (c) the
kva rating of this transformer if it were used as a two-winding transformer.

Solution

(a) The circuit of Fig. 6-2 is used. The autotransformer must have high side
voltage, V7 = 500 v, and low side voltage, ¥; =400 volts. The series wind-
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ing voltage is
Vs=Vy- ¥, =500-400=100v
The series winding current is the load current
Ig = Iy = It g5 = 20,000/500 = 40 amp
(b) The voltage of the common winding is the low side voltage
Vo=V, =400v
The current in the common winding is
Ic = (NsIN¢) Is = (Vs/Vc) Is = (100/400) (40) = 10 amp
An alternative method to find /- is first to find I},
I, =20,000/400 = 50 amp
Then
Ic=1I; - I =50-40=10amp
(c) The apparent power associated with the two-winding transformer is the
product of the voltage and current of one winding
P,r =VcIo = (400 v) (10 amp) = 4000 volt-amp = 4 kva.

If it were used as a two-winding transformer, its rating would be 4 kva,
400/100 volts.

Example 6-3 (Section 6-1)

A two-winding transformer is rated 5 kva, 440/110 v, 60 Hz. Referred to the
440-v winding, the equivalent impedance is Z, = 0.5 +j 0.8 ohms, and the shunt
admittance is Y4 = 0.00026 - j 0.001 mho. This transformer is connected as a
440/550-v step-up autotransformer. (a) Find the kva rating. (b) Find the voltage
regulation for operation with power factor of 0.8 lagging. (c) Find the efficiency
for operation with rated load and power factor of 0.8 lagging.

Solution

(a) Refer to Fig. 6-4. The 110-v winding is the series winding. The output cur-
rent can be the rated current of the series winding.

Iy =Ig =5000/110 = 45.5 amp

The rated high side voltage is Vz = Vo + Vg =440 + 110 = 550 v. The auto-
transformer rating = VI = 550 X 45.5/1000 = 25 kva.
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(b) The given equivalent impedance is referred to the 440-v winding. This would
be Z, in Fig. 59(a). For the autotransformer in Fig. 6-4, the equivalent
impedance is ZeL .

Ng \? (11 )
z, = (—32—) z 5+708)=002+j0032
°L <NS+NC> e ~\550) (05+708)=002+;

Let ¥y and Iy; designate the input values to the ideal autotransformer.
: N¢ 440)
Vg=|—"—]YV, 550 440
H (NC+NS> "= (550 oA

The power factor angle is & = cos™ (0.8) = 36.9°. The high side current is
Iy =45.5 /-36.9° amp.

Ng+N, 550
1;{=<LNC—S) 1H=<440)455[—369 =569 /-36.9° amp

Write Kirchhoff’s voltage equation to find the actual low side voltage.
V. =V +Z,, iy =(440 [0°) +(0.038 / 58° ) (56.9/-36.9°) = 442/0.1° v
The voltage regulation is

Varr 440
(c) The given shunt admittance is referred to the 440-v winding. This would be
Y, in Fig. 59(a). For the autotransformer in Fig. 6-4, this is also Yo,

Yy, =Yg, =0.00026 - j 0.001 mho

In finding the core loss, we use V7 rareq =440 v.
P. =Gy Vi =(0.0026) (440)* =503 w
In finding the copper losses, we use I} ated = Jirated = 56.9 amp
Py =ReL(II,{)2 =(0.02) (569)* =648 w
The summation of losses is
Pios=PrtP.,=648+503=115.1w
The output power is
Poyt = Vgl cos 0 = (550) (45.5) (0.8) = 20,000 w
Use Eq. 1-4 to find the efficiency

Plos 115.1

=1- ———— = 09943
Pot + PLos 20000+ 1151 0

n=1-
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Example 6-4 (Section 6-5)

Three single-phase transformers are connected A-Y as shown in Fig. 6-13.
Each transformer is rated 100 kva, 2300/13,800 v, 60 Hz. The total three-phase
load is 289.8 kva with P.F. = cos 20° = 0.94 lagging. The input voltages are:

V45 =2300/0°, Ve =2300/-120°, Vo, = 2300 /+120°
Find all phasor voltages and currents for this transformer bank. Consider the
transformers to be ideal.
Solution

The turns ratio is @ = 2300/13,800 = 1/6. The dot-marked terminals determine
voltages that are in phase. The line-to-neutral voltages on the secondary are

V,, =(1/a) V45 = 13,800 /0°
Vi =(1/a) Vpe = 13,800 [-120°
Ven = (1/a) Vg, = 13,800 [+120°
Use Kirchhoff’s voltage law to find the line-to-line voltages on the secondary
Vb = Vo = Vi = 23,900 [+30°
Vie = Vi = Ve = 23,900 /-90°
Vea = Ven = Van =23,900 [+150°

Observe the 30° phase shift of the secondary line voltages with respect to the
primary line voltages. The line current on the high side is found from the in-
formation about the load

I=(289,800/3)/13,800 = 7 amp

This current lags behind the line-to-neutral voltage by 20°. The currents through
the secondary windings are

I,,=7/0°-20°=7/-20°
L, =7/-120° - 20° = 7/-140°
I, =7 /+120° - 20° =7 [+100°

The primary current flowing into a dot-marked terminal must be in phase with
the secondary current flowing out of a dot-marked terminal. The current in the
primary windings are

Lip = (1/a) 1,5 =42 [-20°
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Igc = (1/a) 1,5 = 42 [-140°
Ica =(1/a) L, = 42 [+100°
Use Kirchhoff’s current law to find the input line currents
Iy =l4p - Ioy =72.7/-50°
Ig =lgc - Lyp =72.7/-170°
Ic =Igy - Igc =72.7[+70°

If a neutral point were available on the primary side, the line-to-neutral voltage
would be V45 = 1328 /-30°. Observe that the line current I, lags behind this
line-to-neutral voltage by the power factor angle.

Example 6-5 (Section 6-5)

Two transformers, each rated 20 kva, 440/220 v, 60 Hz, are operated in open-
delta as shown in Fig. E-6-5. The input voltages are V,, =440 0°, V,, =
440 [-120°, V,, = 440 [+120°. The load on the secondary is a balanced, wye-
connected resistance load of 1.41 & per phase. Consider the transformers to be
ideal. (a) Find the voltages on the secondary. (b) Find all currents.

Solution

(a) The tums ratio = a = 440/220 = 2. The dot-marked terminals determine
voltages that are in phase.

Vi = (1/a) Vye = (1/2) 440 /-120° =220 /-120°
Vea = (1/2) Vg =220 [+120°
Use Kirchhoff’s voltage law to find V45
Vg =Vac+Vep =-Vea - Ve =220/0°

The secondary voltages form a symmetrical three-phase set.

° e (4
L lmr— et
e e e e ——— d
=" - - - - 1
b | ® ® B
|_rsv — P AM—N
e ] S -
c C

Fig. E-6-5.
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(b) The load current will be in phase with line-to-neutral voltage. The magni-

6-1.

tude of the load current is
T0ad = (220/+/3)/(1.41) = 90 amp
Liv =Van/Zy =90/-30° =1c4
Iy = Vpn/Zg, =90 [-150° = -Ip¢
Iew = Ven/Zy =90 [+90° = Ipc - Iy

The primary current flowing into a dot-marked terminal must be in phase
with the secondary current flowing out of a dot-marked terminal. The cur-
rents in the transformer primaries are

Ibc = (l/a) ICB =45 Z'ISOO = Ib
I =(1/a) Igy =45/-30°=1,
The remaining line current is found by using Kirchhoff’s current law.

I, =1, +1,=45/+90°

Observe that the input line currents form a symmetrical three-phase set.
These results show that two transformers can be used for symmetrical
three-phase. We expect that including the equivalent impedances would
result in some slight deviation from perfect symmetry.

It will be interesting to investigate the power and phase angle for each
transformer. For transformer 2, we have Vge =220/-120° and Igy =
90/-150°. The complex power is P , =P, +j0,=17.1-j99kva. For
transformer 3, we have Vg4 =220 /+120° and I ;¢ = -1, =90/+150°. The
complex power is P, =P3 +j 03 =17.1+79.9 kva. The load power factor
is unity, but each transformer is operating with a different power factor.
The total three-phase load is 34.2 kva, while the load on each transformer is
19.8 kva. If three (instead of two) transformers had been used to supply the
same load, each of them would have needed a rating of only 34.2/3 =
11.4 kia.

PROBLEMS

A resistive load is to be operated at 100 v. The available source is 500 v. A
two-winding transformer is rated 4 kva, 400/100 v. This transformer is to
be used as a step-down autotransformer. Consider the transformer to be
ideal. Without exceeding the current ratings of the windings, find (a) the
current in the series winding, (b) the current in the common winding, (c)
the maximum load kva. Compare this result with Example 6-2.
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An autotransformer is used to supply a 400-kva load at 2640 v and power
factor of 0.8 lagging. The available source voltage is 2400 v. Consider the
autotransformer to be ideal. Find (a) the turns ratio between the series and
the common windings, (b) the current in the series winding, (c) the current
in the common winding, (d) the kva rating of this transformer if it were
used as a two-winding tranformer.

An ideal autotransformer has 3 to 4 for the ratio of series turns to common
turns. Loads are connected as shown in Fig.P-6-3. Z, =(0-79)Q. Z, =
(16 + j 0) Q. Find the driving point impedance at terminals a-b for two
cases: (a) switch k is open, (b) switch k is closed.

3 ==
o o
a k
Zyp =1 4 § 2
b
C;
Fig. P-6-3.

A two-winding transformer is rated 10 kva, 220/110 v, 60 Hz. Referred to
the 220-volt winding, Z, = 0.06 +j 0.16 £ and Y, = 0.002 - j 0.01 mho.
This transformer is connected as a 330/110-v, step-down autotransformer.
(2) What is the kva rating? (b) Find the voltage regulation for unity power
factor load. (c) Find the efficiency for rated load and unity power factor.

. The transformer in Problem 6-4 is connected as a 330/220 v, step-down

autotransformer. (a) What is the kva rating? (b) Find the voltage regula-
tion for unity power factor. (c) Find the efficiency for rated load and
unity power factor.

Three identical single-phase transformers are to be used to supply a balanced
three-phase load of 90 kva at a line-to-line voltage of 220 v. The power
source has line-to-line voltage of 1320 v. No winding is to have more than
1000 v. No winding is to carry more than 150 amp. Find the correct con-
nection for the transformer bank. Find the voltage and current ratings for
the transformer windings.

Interchanging any two leads to the input to a three-phase device will im-
press voltages with the opposite phase sequence. Solve Example 6-4 with
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the lines to A and B interchanged. The input voltages will be Vg5 =
2300 /+180°, Vg =2300/-60° , Vo = 2300 /+60°.

Two transformers are connected in open delta as shown in Fig. P-6-8. The
balanced three-phase load requires 104 kva with power factor of 0.8 lagging.
The transformer voltage ratings are 4400/440 v. Voltages on the load side
are Vyp = 440 [-60°, Vo = 440 /-180°, Vo4 = 440/+60°. (a) Find the
kva rating of each transformer. (b) Find the average power transferred
through each transformer. (c) If a third transformer with the same rating
were used with the other two to make a delta-delta connection, what
would be the total kva capacity of this bank for balanced loading?

a ® ® 4

¢ rrn—

b ® ® B

.__/"0'6'0'\_—

[4 C
Fig. P-6-8.

Two ideal autotransformers are connected in open-delta as shown in
Fig. P-6-9. Each autotransformer is rated 220/88 v. The input voltages are
Vi = 220 [0°, V,, = 220 /+120°, V,, = 220 /-120°. A balanced, Y-
connected, three-phase load has impedance of 5.08 /15° Q per phase. Find
all phasor voltages and currents for this circuit.

4

Fig. P-6-9.
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Electromechanical
Energy Conversion

7-1 MOTIONAL VOLTAGES

The great leap from the study of the static transformer to that of rotating gener-
ators and motors must be undertaken by the reader in several slow steps.

What would be the simplest model embodying the principles of a motional
electromagnetic device? First of all, it must contain a magnetic circuit with an
air gap. In Fig. 7-1a, only the portion of the core nearest the air gap is shown.
The rest of the core with its exciting coil is left to the reader’s imagination.
Inside the air gap, an electric conductor must be located, and, since electric
currents flow in closed circuits, the figure shows a closed rectangular loop. Only
one of its four sides (the “active” conductor) is in a magnetic field.

In terms of the dimensions indicated in the figure, the loop, or one-turn coil,
links the flux

A=BIx 71

where B is the flux density in the air gap which depends on the mmf of the ex-
citing coil and the dimensions and magnetic properties of the core. Now let the
loop move horizontally, to the right or left (referring to the upper part of
Fig. 7-1a). This changes the flux linkages at a rate

d\ _ d(Blx)

dx
aa Py (72)

and by Faraday’s induction law, this constitutes an induced voltage. Specifically,
it is a motional voltage (see Section 2-3). Using the symbol u for the velocity
dx/dt, the very basic result is

e=Blu (7-3)

The reader familiar with electromagnetic field theory will recognize this equa-
tion as a special case of the vector equation for electric field intensity

E=Ux3B (7-4)

110
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(®)

@) ©

Fig. 7-1. Conductor in magnetic field: (a) plan and elevation; (b) resistance inserted;
{c) source inserted.

The scalar equation, Eq. 7-3, is sufficient whenever, as in the arrangement of
Fig. 7-1a (and of most engineering devices based on it), the three pertinent direc-
tions (those of the motion, the field, and the conductor) are all at right angles to
each other.

The cross product of Eq. 7-4 also determines the direction of the electric field
intensity. If Eq. 7-3 is to give the correct sign (plus or minus), the positive di-
rections of motion, flux density, and voltage (in this sequence) must be chosen
to form a right-hand system of rectangular coordinates.* The term direction of
voltage is to be understood the same way as the commonly used arrow in circuit
analysis. For instance, in Fig. 7-2, the voltage e is positive when terminal a has a
higher potential then terminal b. In other words, e = .

Equation 7-3 also illustrates a different way to visualize the induction of
motional voltages. Instead of being considered the result of a change of flux

*A right-hand system of rectangular (Cartesian) coordinates x, y, and z may be defined in
terms of the first three fingers of the right hand, held at right angles to each other. The
thumb points in the positive x-direction, the forefinger in the positive y-direction, and the
middle finger in the positive z-direction. Applying this definition to Eq. 7-3 means that,
when the thumb points in the direction of the motion, and the forefinger in the direction
of the flux, the middle finger indicates the direction of the induced voltage.
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b
Fig. 7-2. Voltage polarity.

linkages, such voltages can also be attributed to the relative motion of an electric
conductor and a magnetic field. They have been described as being due to the
“cutting” of lines of flux, a graphic expression that some readers may find very
helpful.

It must be kept in mind, however, that the expression Blu refers to the voltage
induced in one conductor, whereas d\/dt is the voltage induced in an entire coil.
For instance, if the whole loop (one-turn coil) of Fig. 7-1 were located inside the
air gap, the voltage induced in it would be zero. This could be equally well ex-
plained by stating that the flux linkages of the loop would not change with
motion, or that the two equal Blu voltages induced in the two active conductors
would be opposed to each other. (No voltage would be induced in the other two
conductors whose direction is the same as that of the motion.)

7-2 GENERATOR ACTION

The primitive device model of Fig. 7-1 can be used for much more than the given
derivation of Eq. 7-3. The next step, easily visualized, is to cut one of the three
conductors that are not in the magnetic field, so as to obtain two open terminals,
and then to connect an electric circuit, for instance just a resistance, to these
terminals (Fig. 7-1b).

Whenever the active conductor (the one in the air gap) moves in the direction
indicated before, the induced voltage must cause a current to flow through this
resistance which, consequently, consumes power “generated” by the motion of
the active conductor in the magnetic field. A device based on the model sketched
in Fig. 7-1 can operate as a generator. In the terminology to be used extensively
in later chapters, the active conductor is called the armature, the unseen coil
wound around the core the field winding, and the resistance connected to the
armature terminals constitutes the load of the generator.

A generator cannot possibly deliver electric power to a load unless the same
amount of power is made available to the generator in mechanical form. In the
model of Fig. 7-1, that mechanical power is what is needed in order to move the
armature against the force exerted on the current-carrying active conductor by
the magnetic field.
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Equating the mechanical input power to the electric output power,
Fu=ei (7-5)
substituting Eq. 7-3, and solving for the force F results in
F=Bli (7-6)

This equation of the force exerted on a current-carrying conductor in a mag-
netic field was derived on the basis of two premises: Faraday’s law of electro-
magnetic induction, and the principle of conservation of energy. But many
readers have undoubtedly recognized Eq. 7-6 as a special form of the magnetic
component of the Lorentz force

£=i(€ x B) a7

where f and £ are the vectors representing force and length. Again, the scalar
equation, Eq. 7-6 (similar to the scalar equation, Eq. 7-3), is valid whenever the
three pertinent directions are at right angles to each other, and the correct sign
(plus or minus) is obtained from the equation if the positive directions of cur-
rent, flux density, and force (in that sequence) are chosen to form a right-hand
system of coordinates.*

The two directional rules (for the induced voltage and the magnetic force)
should be taken together to reveal their full significance with respect to conser-
vation of energy. Suppose, for instance, that the flux in the air gap (referring to
the upper view of Fig. 7-1a) is directed upward and considered positive. Let the
conductor move to the right, and call that direction positive. Then the induced
voltage must be positive, which, in order to satisfy the rule that motion, flux
density, and induced voltage form a right-hand system of coordinates, must
mean “out of the paper,”i.e., toward the viewer. If the circuit is closed through
a load resistance, the current has the same direction as the voltage. Now to
satisfy the rule that current, flux density, and force are to form a right-hand sys-
tem of coordinates, the force must be directed to the left, opposing the motion.
This is necessary in order to be in agreement with the principle of conservation
of energy.

So a generator must be driven by its prime mover whose force has to overcome
the magnetic force between field and armature. Note, however, that this force
becomes zero when the armature circuit is open (at no-load). A generator can
be driven essentially without expenditure of energy as long as it delivers no
energy at its armature terminals.

*See the previous footnote. Accordingly, with the first three fingers of the right hand
held at right angles to each other, let the thumb point in the direction of the current, and
the forefinger in the direction of the flux. The middle finger then indicates the direction of
the magnetic force exerted on the conductor.



114 ELECTRIC POWER SYSTEM COMPONENTS

7-3 MOTOR ACTION

Being aware of the force between a magnetic field and a current-carrying con-
ductor leads to considering how to make use of that force. An electric current
must be obtained in the armature by connecting its terminals to a source. Fig-
ure 7-1 can still be used as a model. The source now takes the place that was
occupied by a load resistance in the previous section. (See Fig. 7-1c)

Let the current and the flux density have the same directions as before (i.e.,
current out of the paper, flux density upward, always referring to the upper view
in Fig. 7-1a). Application of the rule for the direction of the force results in
establishing that the force is directed to the left. Consequently, the conductor
tends to move to the left. So the device modeled by Fig. 7-1 can be used to
overcome a force that opposes the motion. In this case, the device operates as a
motor, and the force to be overcome constitutes the mechanical load of the
motor.

The principle of conservation of energy, expressed by Eq. 7-5, must again be
satisfied but, this time, the electric power ei is the input and the mechanical
power Fu the output. The fact that the device depicted by Fig. 7-1 can operate
both as a generator and as a motor (in other words, that the process of energy
conversion is reversible) is typical for most electromagnetic energy-converting
devices.

Equations 7-3 and 7-6 remain valid, together with their directional rules.
Application of these rules leads to the result (inevitable in order to agree with
energy conservation) that the induced voltage opposes the voltage of the source
connected to the terminals. That is why the voltage induced in a motor arma-
ture is sometimes referred to by the old name “counter-emf” or “back-emf.”

Figure 7-3 illustrates the difference between generator and motor operation in
terms of current and voltage directions. In the diagrams of Fig. 7-3a the direction
of the current (and of the force) is the same. More significant from a practical view-
point are the diagrams of Fig. 7-3b in which the direction of the voltage (and of
the motion) is the same. Whichever pair of diagrams is used, it can be seen that,

L I
QO O O

Fig. 7-3. Generator and motor operation: (a) same current direction; (b) same voltage
direction.
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when the device operates as a generator, the current flows through the armature
from the terminal with the lower potential to the terminal with the higher poten-
tial. In a motor, by contrast, the current must flow from the higher to the lower
potential (as it does in any circuit that receives power, e.g., in a resistance).

A motor might be blocked, i.e., forcibly kept at standstill. This happens when
the opposing force is just too large to be overcome by the magnetic force. In
this condition, the output of the motor is zero, and so is its input no matter how
much current it may draw from the source since, without motion, there is no
induced voltage.

7-4 SINGLY EXCITED DEVICES

The device modeled in Fig. 7-1 involves two electric circuits, one on its fixed
part and one on its movable part. The same is true for most actual generators
and motors. One of these circuits, that of the field winding, could be omitted
by using a permanent magnet as the core, but that has not been found to be
practical for most power-converting devices. It is possible, however, to build
devices capable of motor and generator action and having only one electric cir-
cuit without taking recourse to permanent magnetism. Such devices are used for
many other purposes (including instruments, microphones, phonograph pickups,
and relays), but they will be discussed here because some further concepts useful
in the study of generators and motors can be learned thereby.

Figure 7-4 shows a model of such a device. There is again a magnetic circuit
with an air gap but, this time, part of the core itself is movable (the right-side top
part). The movable part is meant to have one degree of freedom: it can move hori-
zontally, to the left or right. There is a coil wound around the fixed part of the
core. Positive directions are assigned in the diagram to the voltage and current

L
—
+ d“‘»‘*—;
e C“D
- C_.,.,_D

Fig. 7-4. A singly excited electromagnetic device.
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of the coil and to the flux in the core. The choice of current and flux directions
is consistent, i.e., such that a positive current produces a positive flux.

When the movable part actually moves, several changes take place. To begin
with, the distance x changes, and since x is the length of the air gap, the reluc-
tance of the magnetic circuit changes. This brings about a change of flux (unless
the change of reluctance is counteracted by a simultaneous change of mmf), and
a change of energy storage. Therefore, the simple power balance of Eq. 7-5
must be replaced by

ei*—‘g—— +F — (7-8)

where F is the electromagnetic force exerted on the movable part, and W,, is the
energy stored in the magnetic field. Note that the positive direction assigned to
the force F is the direction of a motion with a positive velocity dx/dt. (As a
consequence of this choice, the reader may well anticipate that the actual values
of F must be negative, since the electromagnetic force tends to pull the movable
part to the left.) Also, the positive directions of the voltage e and the current i
are chosen so that the product ei is positive when the device receives electric
power.

The equation is written in such a way that the left side represents electric
input power. Whenever both the product e and the product F(dx/dt) are posi-
tive, the device has an electric input and a mechanical output, which is the
essence of motor action. If these two products are at any time both negative,
the device operates as a generator. These statements are valid regardless of the
sign of the other term, i.e., regardless of whether the magnetic field energy in-
creases or decreases during the motion.

Magnetic field energy has been investigated in Section 4-3. The pertinent
result, quoted from Eq. 4-13, is

¢,
AW, = f Fa¢ (79)
¢

To evaluate this integral, the mmf F must be expressed as a function of the flux
¢. The relation between these two quantities is the familiar saturation curve,
which gives the flux as a function of the mmf (by tradition) instead of the other
way around. Therefore, the energy increment of Eq. 7-9 is represented in the
graph of Fig. 7-5 by the area abcda between the curve and the vertical axis. The
total stored energy, obtained by setting the lower limit of the integral equal to
zero, is represented by the area 0bcO to the left of the saturation curve.

For a device like that of Fig. 7-4, however, the saturation curve itself depends
on the position of the movable part, i.e., on the distance x. The larger x, the
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Fig. 7-5. Magnetic field energy.

larger the reluctance of the magnetic circuit, the larger the mmf required for a
given flux. Instead of one curve, there is a family of saturation curves, one for
every value of x. Figure 7-6 shows two curves of that family, belonging to the
values x; and x,. Note that x, must be larger than x,.

Suppose that, at a certain instant, the movable part is located at x = x; and the
flux is ¢;. Then the area OacO in Fig. 7-6 represents the energy stored at that
instant, regardless of whether the movable part was always in the same position
or not. In other words, the energy storage depends on the condition or state of
the device, and not on its past history. (This is true only because hysteresis is
ignored in this discussion. From a practical viewpoint, the importance of hys-
teresis lies not in its effect on energy storage, but rather on the energy loss that
it causes under alternating conditions.)

X2

X1

¢1v

Fig. 7-6. Motion at constant flux.
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Now consider what happens when motion occurs, changing the position x
from x; to x,. The state of the device is described by a point (in Fig. 7-6) that
wanders from some place on the lower curve to some place on the upper one.
The actual location of these two places and the path leading from one to the
other depend on several external factors: the circuit connected to the coil (is it a
resistive voltage source, or a pure current source, or what else?), and the assisting
or resisting external force (for instance a weight attached to a rope around a
pulley, as suggested in Fig. 7-4) plus the inevitable forces of inertia and friction.
There is an infinite variety of possibilities out of which two cases are of special
interest.

(a) Let the motion occur at constant flux. This could be done by adjusting
the current during the motion, or it could be approximated by having the motion
occur so fast that the flux cannot change appreciably until after the motion is
completed. In this case, the electric power is zero as can be seen from

[ 99, _ o d9
ez—(N dt)l_ ar (7-10)
Thus, the power balance of Eq. 7-8 becomes
_dWy, dx
0= o +th (7-11)

which means that mechanical work is being done solely at the expense of stored
magnetic energy. Referring to Fig. 7-6, keeping the flux constant at the value
¢1, the magnetic field energy is being reduced during the motion, from the area
0acO to the smaller area 0bcO. The difference, the area 0ab0, represents the
mechanical work done (for instance, the potential energy added to the weight

X2

X1

F

Fig. 7-7. Motion at constant mmf.
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lifted). Equation 7-11 can also be solved for the force, which comes out as a
partial derivative

ow,
F=- (——"’) 7-12
ox ¢ =const ( )

(b) The motion could be made to occur at constant current (constant mmf is
the same thing), either by using a pure constant current source, or approximately
by making the motion sufficiently slow. Figure 7-7 suggests that what is perti-
nent for such a process is not the area between a saturation curve and the vertical
axis (the magnetic field energy), but rather the area between that curve and the
horizontal axis. The quantity represented by this area has no physical meaning,
but it is a useful function of the state of the device, and it is called the coenergy
W,, . Figure 7-8 shows the relation

W + Wy, = 56 (7-13)
which can be differentiated:

LN L O

dt dt dt dt (7-14)

Solving this for dW,,/dt, and substituting it, as well as Eq. 7-10, into Eq. 7-8
(the power balance), leads to
dae AWy, + do d¥ dx

ar dr ar 0 tFar (7-15)

The purpose of all this was to be able to cancel the ¥ (d¢/dt) terms, and to intro-
duce the term ¢(dF/dt), which is zero in the case under consideration (motion

Fig. 7-8. Energy and coenergy.
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with constant mmf). Thus, for this case

AWy, dx
= - — + —_— -
0 i F ar (7-16)
which says that the mechanical work done is equal to the increase in coenergy.

It also leads to another expression for the force:

ow,
F= (—”L) 7-17
0x / i=const ( )

Observe that in both cases (motion with constant flux and motion with con-
stant current), the mechanical work done is represented by the area between two
saturation curves. Since any arbitrary contour leading from one saturation curve
to another can be broken up into (infinitesimal) horizontal and vertical steps, it
follows that the mechanical work done by the motion of a device like that of
Fig. 7-4 is always described by the area bounded by the initial and final satura-
tion curves and the contour. From this, it may be further concluded that motion
from right to left (referring to Fig. 7-4) must result in a mechanical output, or
that motion from left to right requires a mechanical input.

75 LINEAR ANALYSIS

There is no difficulty in evaluating Eq. 7-12 or Eq. 7-17 for the force across an
air gap of a magnetic circuit, provided that a family of saturation curves is given
or has been calculated. There are algorithms for the use of Simpson’s rule or of
several other methods to evaluate definite integrals. Then, the slope of the func-
tion W, or W, versus x can be found, either by graphical or by computational
techniques. But for the purpose of obtaining general qualitative results rather
than numerical answers to specific numerical problems, the use of linear approx-
imations becomes preferable.

Figure 79 depicts a saturation curve that is a straight line through the origin.
From this diagram, it is seen that, in the linear case, energy and coenergy are
equal to each other, and that they can be found as the area of a triangle.

Wi =Wy = % (7-18)
Other useful expressions are found by substitutions that introduce the reluctance
R =% /¢, the permeance ? = ¢/¥, or the inductance L = \/i =N2¢/F. They are

_Ro9_%

y =3 ¢’ (7-19)

Won
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Wm'
F

Fig. 7-9. Linear analysis.

[ ?(?ff) _ g 2
W ==2—=3F (7-20)

and the familiar
N2
wr’n =_3_.(_§L)=£l'2 (7_21)

2 2

These expressions can, in turn be substituted into the force equations, Egs.
7-12 or 7-17, respectively, with the results

¢* dR
F=- > — (7:22)
F* 49
F=_é_ E (7-23)
2 dL
F= -5 g)’c— (7-24)

Here are, then, three new equations for the magnetic force across an air gap,
and they all tell the same story in three different ways: the magnetic force acts
so that the motion it would tend to produce would decrease the reluctance or
increase the permeance of the magnetic circuit, or increase the inductance of
the electric circuit. The three statements are redundant: each of them could be
derived from any of the two others. It also follows from them that there is no
force in a direction in which a motion would not change the reluctance (perme-
ance, inductance).

In the device model of Fig. 7-4, the force on the movable piece is directed to
the left, according to any of these three equations, and also in agreement with
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Fig. 7-10. irregular loop.
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Fig. 7-11. Coil.

the results of the previous section. Many other phenomena, some of them well
known, can also be explained in terms of reluctance, permeance or inductance.

(a) A current-carrying loop of wire (Fig. 7-10), loosely lying on the ground or
on a table, will assume a circular shape to maximize the area it encloses.

(b) A coil (Fig. 7-11) tends to shorten itself to minimize the length for which
the lines of flux are crowded into a limited area. These two examples can also
be taken as illustrations of the magnetic force between two current-carrying
conductors: they attract each other when their currents are in the same direc-
tion, etc.

(c) Consider a movable piece of iron in the air gap of a magnetic circuit (Fig.
7-12). Assume the effect of fringing to be negligible. Then, theoretically, there
is no force in the horizontal direction because a horizontal motion would not
change the reluctance of the magnetic circuit. But there is definitely a force
pulling the piece downward toward the centered position. This can also be ex-
plained in terms of the attraction of induced magnetic poles.
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Fig. 7-12. Piece of iron in air gap.

7-6 ROTATING MOTION

Devices based on the models of Figs. 7-1 and 7-4 exhibit the main characteristics
of motor or generator action during the time in which motion actually occurs.
Practical power-converting devices, however, must be able to operate continu-
ously. Therefore, devices like those studied so far in this chapter could be used
as motors or generators only by performing reciprocating motion—moving back
and forth. This is indeed the way many nonelectrical machines run: the old-
fashioned steam engine, and most gasoline and Diesel engines.

Wherever rotating motion is feasible, it is far preferable to reciprocating mo-
tion. It avoids the constant rise, fall, and reversal of accelerating and decelerating
forces and the stresses, strains, and vibrations they cause, with their further con-
sequences of noise and material fatigue. This is the reason why the old recipro-
cating steam engines have been superseded by steam turbines, and it is one of
the reasons why the invention of a rotating internal combustion engine (the
Wankel motor) has caused such a stir. Electric motors and generators are well
suited for rotating motion, and they are always built for it.

It is easy enough to change the model of Fig. 7-1 from a reciprocating to a
rotating device. As Fig. 7-13 shows, it is only natural that, in the process, the
magnetic core is provided with two air gaps instead of one. As a consequence,
the one-turn armature coil of the figure now has two active conductors, a further
advantage compared to the model of Fig. 7-1. The entire magnetic core is
shown, including the exciting coil on the left leg. The circle drawn as a broken
line indicates the path of the two active conductors which are themselves de-
picted as small circles representing their cross-sections.

This model can also be modified to become a rotating counterpart of the one
of Fig. 7-4 (the singly-excited one). Just omit the armature coil and let the
middle piece of the core rotate instead, around the same axis. This causes the
reluctance of the magnetic circuit to change (it has its minimum value in the
position of the figure), which makes electromechanical energy conversion
possible.
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Fig. 7-13. Rotating device.

Many equations of this chapter have to be adapted to rotating motion. In
place of the distance or position variable x, there is now an angular position 4,
with an arbitrarily chosen reference position for which 8 is zero. Consequently,
the velocity u = dx/dt is replaced by the angular velocity w = df/dt. This is a
more significant quantity, since all points of a rotating body have the same
angular velocity whereas most of them do not have a velocity of the same mag-
nitude and direction. When the angle 0 is expressed in radians, the velocity of
any point of a rotating body has a magnitude u = dx/dt = r(df/dt)= rw where
r is the radius or distance from the axis of rotation.

Likewise, equations describing a rotating motion should not contain a force F
but rather a torque T = Fr. This is so because, when forces are acting on several
points of a rotating body, it is the torques whose sum causes the rotating motion,
not the forces. For instance, in the device of Fig. 7-13, the sum of the forces
exerted on the two active conductors is zero, but the total torque is twice that
of a single conductor.

The “translation” of the pertinent equations into the “language” of rotating
motion is done simply by replacing x by 0, u by w, and F by T. That is so be-
cause the mechanical power for rotating motion is the product T'w. Thus the
straight electromechanical power balance of Eq. 7-5 becomes ei = Tw, and the
power balance involving a change of magnetic energy storage (Eq. 7-8) becomes

. dw,
ei = -at—m +Tw (7-25)

The various force equations for singly excited devices (Eqs. 7-12, 7-17, and 7-22
to 7-24) become torque equations:

aw,,,)
=-\=2 726
( af @ =const ( )
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T=- % %? (7:28)
T= %i ‘;—i (7-29)
T= '2—2 % (7-30)

all of which can be derived from Eq. 7-25 exactly the same way as the original
equations were derived from Eq. 7-8.

Apart from reciprocating and rotating motion, there is yet another kind of
motion that deserves to be mentioned. It is called linear motion (unfortunately,
using a word that has different meanings), and it refers to a vehicle moving along
its road or track. There exists the possibility of having a continuous system of
electric conductors placed on the track, facing a similar set of conductors on the
vehicle, just as the stationary and moving conductors of a conventional motor
are facing each other. These conductors form a /inear motor that drives the
vehicle. The idea has been used for limited purposes (the launching of planes
from an aircraft carrier) but at this writing, it is the subject of theoretical and
experimental schemes for railroads.

7-7 TORQUES IN MULTIPLY EXCITED DEVICES

Flectric motors and generators consist of a rotating part called the rotor and a
stationary part called the szator. In most cases, rotor and stator are each
equipped with one set of interconnected electric conductors called a winding.
The two circuits indicated on the model of Fig. 7-13 may serve as an example.
Some machines carry more than two windings.

To determine the electromagnetic torque exerted on the rotor will be one of
the major subjects in the chapters dealing with the operation of each of the
main types of motors and generators. At this point, however, a linear approxi-
mation is sufficient to provide insight into the general principles involved, and
it will be limited to devices with double excitation, i.e., with two electric cir-
cuits. The derivation will be based on the same two basic laws of nature that
were used to find the torque (or force) in singly excited devices; the principle of
conservation of energy , and Faraday s induction law.

To begin with the conservation law: the power balance of Eq. 7-25 must now
have two terms on its left side, one each for the stator and the rotor. With the
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induction law used for both induced voltages,

Ly AW (731)

hgr thg dt

where A; and A,, the flux linkages of the two circuits, are produced by both
currents. Thus, they can be written, for a linear device, in terms of self- and
mutual inductances (see Section 2-4) as follows:

M =Lgiy + Mi, (7-32)
A =Mi, +L,i, (7-33)

provided negative as well as positive values are allowed for M.

The inductances L;, L,, and M depend on the reluctance of the magnetic
circuit. For a motional device, the reluctance, in turn, may depend on the
angular position 8 of the rotor. In order first to obtain an expression for the
energy storage W,,, however, the rotor is held at an arbitrary fixed position,
making the angular velocity zero and keeping all the inductances constant. So
the power balance equation for a fixed rotor becomes

. diy 2 . diy . diy, _ dW,,
Llll dr +Mll 7 +Ml2 dr +L2l2 dt = dt (7-34)
leading to the result
L L
W, = —2—‘ i+ —22 i2 + Miyi, (7-35)

which is easily verified by differentiating it with respect to ¢.

On the other hand, when the rotor is free to move, the flux linkages can change
for two different reasons (see Section 2-3): because of a change of current mag-
nitudes, and because of the motion. Therefore, in differentiating flux linkages,
the inductances can no longer be treated as constants. Thus, for instance,
d)\ di, . dL, di, . dM
Sar Tl thog Mg thg
The reader can recognize that two of these four terms are transformer voltages,
and the other two (characterized by the derivatives of inductances) motional
voltages. Similarly, the other voltage e, is expressed as the sum of four terms,
and then both voltages are substituted into the left side of Eq. 7-31. On the right
side, there is the derivative of the magnetic energy. This means that Eq. 7-35
has to be differentiated but, this time, not for a fixed rotor, resulting in seven
terms to which the mechanical power is added. So the power balance equation

(7-36)

€1
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becomes rather lengthy:

di, dL, di, aM
g (L‘ hgy Mg th dt)

di aM di dL
*fz(Mz# +igr tla gt 'd72>

di, # dL, . diy & dL,

=Lih grty o b oy

di, di, aMm do
+Mi, =+ o + Mi, — i + iy = r +Td_t (7-37)

Fortunately, many terms can be cancelled, with the final result

poidly B odly . dM

3R)*
2@ v @ Thh g (7-38)

As was to be expected, this equation includes the case of the singly excited
device. Just set one of the two currents equal to zero, and the expression re-
verts to that of Eq. 7-30. So the first two terms of the torque equation for a
doubly excited device are reluctance torques as previously encountered. But
the third term is new, and it is of particular interest because it is possible for the
mutual inductance to be changed by motion even if the self-inductances are not
affected by it. This happens in a device in which motion does not change the
reluctance of the magnetic circuit but only the position of the two windings
relative to each other, as the next section will show.

7-8 SALIENT AND NONSALIENT POLES

In this section, the model of Fig. 7-13 will be changed in various ways to come
closer to the actual design of engineering devices. For this purpose, it is helpful
first to introduce another pictorial representation of a winding. Figure 7-14
shows (a) the coil symbol used in previous chapters, and (b) the new one con-
sisting of small circles that indicate the cross-section of conductors located per-
pendicular to the paper, and not showing the (horizontal) connecting wires in
front and back of it. In place of arrows, this representation permits the indica-
tion of circuit directions by means of dots (the points of arrows facing the

*It might be thought that this result could have been obtained more quickly by substitut-
ing Eq. 7-35 into Eq. 7-27 (with W,, = W,,). But it would have been necessary to prove
that Eq. 7-27 is valid for devices with double excitation.
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Fig. 7-14. Two equivalent representations of a winding.

viewer, meaning “out of the paper”) and crosses (meaning “into the paper”).
These symbols will be used consistently from here on.

The first change to be undergone by the model of Fig. 7-13 is to let the middle
part of the right leg rotate with the coil. The reason is that the coil by itself
could not possibly be made strong enough to withstand the magnetic and cen-
trifugal forces acting on it. It must be firmly attached to, and supported by,
that part of the core that thereby becomes the rotor.

This leads to a design whose basic features are depicted in Fig. 7-15, which
shows two rotor positions. In these two sketches, the stator winding is placed
near the air gaps, and the other legs of the core are not shown. The rotor posi-
tion is described by the angle 8, which is meant to be the angle between the
larger rotor axis of symmetry and the vertical direction. So, 8 =0 in Fig. 7-15a,
and 90° in Fig. 7-15b.

Attention must be drawn to the magnetic circuit and the flux configuration.
When 6 = 0, the stator and rotor mmfs aid each other in producing a flux two

Fig. 7-15. Device with salient poles.
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lines of which are sketched as broken lines (note that they cross the air gaps in
radial direction). When 8 = 90°, the stator mmf by itself would still produce
a vertical flux as before, although reduced by the reluctance of the larger air
gaps. The rotor mmf by itself, however, can only produce some flux according
to the two broken lines in Fig. 7-15b.

We are now ready to apply the torque equation, Eq. 7-38, with its derivatives
of inductances, to the model device of Fig. 7-15. (This equation is based on a
linear approximation, to be sure, but the results are at least qualitatively valid.
They may even be close quantitatively to the true values for an actual machine
due to the effect of the air gaps that tend to reduce the nonlinearity of the
magnetic circuit.)

How do the inductances vary as functions of the angle §? Self-inductances, or
flux linkages per ampere, are proportional to the permeance (inversely propor-
tional to the reluctance) of the magnetic circuit. Thus, both the stator induc-
tance (say, L;) and the rotor inductance (L,) can be seen to have maximum
values at @ = 0 or 6 = 180°, and minimum values at # = +90°. Mutual inductance,
on the other hand, refers to the flux produced by one current and linking the
other circuit. Figure 7-15b shows that, for § = 90°, the flux produced by the
rotor current does not link the stator winding at all and vice versa; in other
words, in this rotor position, M = 0. In the position of Fig. 7-15a, when 6 = 0,
the mutual inductance has its maximum value but, at @ = 180°, the lines of flux
produced by one current link the other winding “from the other side”; in other
words, the sign of M is reversed. Figure 7-16 is a sketch of the three inductances
as functions of 6, in accordance with the above reasoning. Example 7-3 uses
plausible values and illustrates how the torque varies as a function of the angle 6.

Another way to look at the device under study is to consider the stator and
the rotor as two electromagnets, and to call the surfaces at which the flux enters

180° 360°

Fig. 7-16. Inductances of the device of Fig. 7-15.
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and leaves them, their poles. Specifically, the surface at which a flux leaves a
core is its north pole, the other its south pole. In both parts of Fig. 7-15, the
stator poles are marked by italic capital letters (V and S) and the rotor poles by
italic lower case letters (n and s). This point of view is sufficient to show that
the rotor is in a state of equilibrium when 8 = 0, and that the forces of magnetic
attraction and repulsion tend to turn it into this position, which agrees with the
more specific results obtained through Eq. 7-38.

Another design, used for many machines, is obtained by making the rotor
cylindrical, as shown in Fig. 7-17. This requires that the active rotor conductors
be placed in slots cut into the surface of the rotor core; otherwise, the air gap
would have to be unreasonably large to be able to accommodate them. The slots
also have the advantage that the conductors can be better secured against cen-
trifugal forces by (nonmagnetic) wedges.

The two broken lines in Fig. 7-17 indicate the stator flux. Note that the
magnetic circuit for the stator flux remains the same no matter what the angle
0 may be at any moment. Thus, the stator inductance L, is a constant, not a
function of 6. On the other hand, the rotor flux depends on the angle much as
it did in the device of Fig. 7-15 and for the same reason. So there is one reluc-
tance term in the torque equation, not two. The mutual inductance changes
about the same way as it did in the previous case.

The poles are again marked in the figure, indicating that, in the position
shown, the torque is in the clockwise direction and remains so until the rotor has
travelled about 120° to reach a position of equilibrium. In contrast to the poles
of the cylindrical rotor, those of the stator are called salient poles. In the model
of Fig. 7-15, both the stator and the rotor have salient poles.

® ®
® R
/
®
®
/
@® &
® 9

Fig. 7-17. Device with salient-pole stator and cylindrical rotor.
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Fig. 7-18. Device with cylindrical stator and rotor.

The final sketch of this section, Fig. 7-18, represents a device with a cylindrical
stator and a cylindrical rotor; in other words, with nonsalient poles on both
stator and rotor. The poles are again marked by the letters N, S, n, and s. The
device is drawn with the rotor in the same position as in the previous figure, but,
in contrast to it, this time the entire magnetic circuit is shown. Note that the
active conductors of both stator and rotor are placed in slots (indicated by being
drawn just inside the core surface).

The two broken lines are typical lines of stator flux. It is significant that all
lines of flux (except those of leakage fluxes) must cross the air gap twice.
To what extent they link the other winding depends on the rotor position.
Thus, the mutual inductance M is again a function of the angle 8. The two self-
inductances, however, are constants, and the first two terms of the torque equa-
tion, Eq. 7-38, are, therefore, both zero.

Devices with salient-pole rotors and cylindrical stators will also be encountered
in later chapters. As the reader might expect, they have constant rotor induc-
tances and position-dependent stator inductances.

79 EXAMPLES
Example 7-1 (Section 7-4)

The relay mechanism in Fig. 7-4 has a saturation curve that is approximated by
é=M/x) VF or F=(¢x/M)?, where ¢ is in webers, Fis in ampere-turns, x is in
meters, and M =9 X 1078, (a) Find the stored energy as a function of ¢ and x.
(b) Find the coenergy as a function of ¥ and x. (c) Find the derivatives of
energy and coenergy with respect to the gap length x. (d) Find the mechanical
force for x = 0.01 m and ¢ = 0.0006 weber.
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Solution

(a) The given saturation curve describes a nonlinear relation between ¢ and ¥.
Use Eq. 79 to find the field energy

¢ ¢
=[5 o= [ 6 do=Gnyers

0

(b) The coenergy is found as follows

F F
W = fo 0d% = (M)x) f 112 aF = (M/x)(2/3) F

Notice that for this nonlinear problem W,, # W,,. Refer to Fig. 7-8. Sub-
stitute the function for ¥ into the result for coenergy to show

Wy, = (M]x)(2/3)(@x/M)? = (x/M)*(2/3) 6 = 2W,,
(c) Differentiate the foregoing answers with respect to x
AWpldx = (2x[M*)(¢°/3)
AWy [dx = -(M[x)*(2/3) T2

Substitute the equation for F into the derivative of coenergy to show
AW [dx = -(M[%)*(2/3)(x/M)* = -(x/M*)(2/3)¢ = - AWy, [dx
This result is in agreement with Eqgs. 7-12 and 7-17.

(d) Substitute the given values into Eq. 7-12 to find the force.

F= —<%) = -(x/M?)(2/3) ¢* = -178 newtons

The force on the movable member is exerted in the direction that tends to
decrease the air gap.

Example 7-2 (Section 7-5)

The relay mechanism in Fig. 7-4 has reluctance as a function of the gap length
x as follows:

R(x) =9 X 108(0.003 + x) mKks units

where x is in meters. The coil has 1620 turns and 55 £ resistance. The external
voltage source is 110 v, d-c. (a) Find the energy stored in the magnetic field
when the relay is OPEN (x = 0.006 m). (b) Find the energy stored in the mag-
netic field when the relay is CLOSED (x = 0.001 m). (c) Find the work done
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if the relay is allowed to close SLOWLY from x = 0.006 m to x = 0.001 m.
(d) Find the work done if the relay is allowed to close FAST from x = 0.006 m
to x = 0.001 m. (e) Find the coil current as a function of time during the elec-
trical transient that follows the FAST closing of part (d).
Solution
(a) Forx =0.006 m,we can find the following. The current in the coil is
I, =V/R=110/55=2amp
The magnetomotive force is
¥, =NI, =1620 X 2 =3240 At
The reluctance of the magnetic circuit is
R, =9 X 108(0.003 + 0.006) = 8.1 X 108
The flux across the air gap is
¢1 = F1/R: = 3240/(8.1 X 10°) = 0.0004 weber

For a fixed value of x, the relation between ¢ and ¥ is a straight line. This
is illustrated in Fig. E-7-2; The energy stored in the magnetic field is found
from Eq. 7-18.

Wy =1 F1¢, =area OacO = 0.648 joules

] CLOSED
e b/ x=x

(]

OPEN

¢ b a/xle
1

Fig. E-7-2.
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(b) For x =0.001 m, we can find the following. The reluctance of the magnetic
circuit is
R, =9 X 108(0.003 + 0.001) = 3.6 X 108
The flux across the air gap is

¢, = F,/R, =3240/(3.6 X 10°) = 0.0009 weber

In the steady state, the current and mmf have the same values as in (a). The
energy stored in the magnetic field is found from Eq. 7-18.

W, =1 F,¢, =area 0b'c’'0 = 1.458 joules

(c) For SLOW closure, the locus of ¢ versus F is along line @ - »". The work
done is given by

Wonech = area 0ab'0 = 1 (¢, - ¢,) = 0.810 joules

(d) For FAST closure, the locus of ¢ versus ¥ is along line @ - b. At point b,
the reluctance is R, , but the flux is still at ¢,. The magnetomotive force is

F3 =Ra¢, =3.6 X 10° X 0.0004 = 1440 At
The work done is given by

Wmecn = area 0zb0 = %d)l(‘fl - ¥3)=0.360 joule

(e) After a FAST closure and during the electrical transient, the ¢ versus ¥ locus
is along line b - b'. Choose ¢ =0 as the instant of closing. The current in
the coil immediately after closing is

i(0+) =F3/N = 1440/1620 = 0.89 amp
The self-inductance of the coil is given by
L, =N?%/F=N?R, = (1620)*/(3.6 X 10%) = 0.73 henry
The time constant for the exponential transient is
7=L,/R=0.73/55=1/75=0.0133 sec
The current function is

i(O)=1 - [, -i(0H)]e " =2-111e"" for t>0

Example 7-3 (Section 7-8)

For the doubly excited system in Fig. E-7-3, the inductances are approximated
as follows: Ly =11+ 3 cos 20, L, =7 +2 cos 26, M =11 cos 6 henrys. The
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Fig. E-7-3.

coils are energized with direct currents. /; =0.7 amp. [, =0.8 amp. (a) Find
the torque as a function of #. (b) Find the energy stored in the system as a
function of 6.

Solution

(a) Use Eq. 7-38 to find the torque. Find the derivatives of the inductances
with respect to 6.

dL]/d0 = -65sin 20, dL,/d0 =-4sin 20, dM|d6 =-11 sin 6
=13 dL,|d6 + } i3 dL,/d6 + iyi, dM/d6

= 1(0.7)*(-6 sin 26) + 1(0.8)*(-4 sin 20) + (0.7)(0.8)(-11 sin 6)
=-2.75 sin 20 - 6.16 sin & newton-meters

For the position shown in Fig. E-7-3, 8 = -50°. The value of torque is
T = +7.43 nm. This torque acts counterclockwise on the rotor. If this rotor
is allowed to turn, it will move to the position where 6 = 0° and where the
torque is zero. (The torque is also zero at 6§ = 180°, but if the position is
away from 180°, the direction of the torque will tend to move the rotor
toward 0°.) The sign of the mutual term is sensitive to the polarity of the
currents. The reluctance torque terms are independent of the polarity of
the currents.
(b) The stored energy is given by

Wy = 20,83 + 11,13 + Miy i,
=1(11+ 3 ¢0s 26)(0.7)* + (7 + 2 cos 26)(0.8)* + (11 cos 6)(0.7)(0.8)
=4935+1.375 cos 20 + 6.16 cos 6
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We can see that maximum energy is stored for & = 0°. Energy stored has
positive value for any position of the rotor.

Example 7-4 (Section 7-8)

A machine with two coils has inductances as follows: (on rotor) L, = 0.1 henry,
(on stator) L, = 0.5 henry, M = 0.2 cos 8 henry, where 6 is the angle of the rotor
coil axis displaced counterclockwise with respect to the stator coil axis. Coil
1 (on rotor) is short circuited. Coil 2 (on stator) is energized from a 60-Hz
sinusoidal voltage source of 110 v. Resistances of the coils may be neglected.
Assume the circuit operates in sinusoidal steady state. @ is set at 30°. (a) Find
an expression for the instantaneous torque on the rotor. (b) Find the value of
the average torque on the rotor. (c) Determine the direction of this torque.

Solution

(a) In order to find the developed torque, we must first solve an electric circuit
problem to determine the values of the currents in the coils. The equivalent
circuit is shown in Fig. E-7-4a. Write Kirchhoff’s voltage equations

V= +j(4JL212 + ](.OMI]

0= +].0)M12 +j(4)L111
These yleld Il = ‘(M/Ll)lg s 12 = V/]w(L2 - M2/L1)
From the given data, M = 0.2 cos 30° = 0.1732 henry
Choose V for the reference. V = 110/0°

Then the currents are I, =-j 146 and I, =+j2.53.
The current functions are

i(t)=1.46+/2 sin377¢t, iy(t)=-2.53/2sin377¢

I I
+ [ N ]
ok § E
- Ay
M
(@

Fig. E-7-4.
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Use Eq. 7-38 for the torque

dL./d8 =0, dL,/d6 =0, dM/d6 =-02sin6
T =i,i,dM/d8 = (2.06 sin 377¢)(-3.58 sin 377£)(-0.2 sin 30°)
=0.74 sin? 377¢ =0.74 [1 - 1 cos 2(377) ¢]
=0.37 - 0.37 cos 754t nm

(b) Since the average value of the cosine function is zero, we can conclude
Tywe =0.37 nm.

(c) Figure E-7-4b illustrates the conditions of this problem. At an instant
of time when the stator current produces a magnetic field polarity, N,
S5, as shown, the rotor current has the direction shown. The rotor field
results in a repelling action that makes the torque on the rotor to be
counterclockwise.

Example 7-5 (Section 7-8)

A simple device is depicted in Fig. E-7-5a. The ends of the conductors that are
in front of the page are labelled a, a’, b, b'. The labeled current directions are
for positive values of current. Let the rotor turn counterclockwise with constant
angular velocity of w rad, sec. (a) Let i, = +10 amp (d-c) and i, = 0. Determine
the voltage polarity in coil b - b’ for the instant shown with 8 = 60°. (b) Let
iy = +10 amp (d-c) and i, = +10 amp (d-c). Determine the direction of the
torque on the rotor for the position shown with 8 = 60°. (c) For the conditions
of part (b), determine whether motor action or generator action is taking place.

()
Fig. E-7-5.
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Solution

(@

(®)

©

Determine the direction of the magnetic field produced by i,. Since i, has
positive value, it enters the page in conductor 4’ on the left and comes out
of the page in conductor a on the right. This causes lines of flux in the
vicinity of conductor b to be oriented from the stator across the air gap into
the rotor. This is illustrated in Fig. E-7-5b. Use the right hand. Thumb
points in the direction of u. Forefinger points in the direction of 8, Middle
finger points up. We conclude that b is positive in front of the page.
Accordingly, vy, > 0.

Since current i, has positive value, it comes out of the page in conductor b.
The direction of flux across the air gap is the same as in part (a). This is
illustrated in Fig. E-7-5b. Use the right hand. Thumb points in the direc-
tion of current i,. Forefinger points in the direction of flux. Middle finger
points toward the right at the angle depicted. We conclude that the torque
on the rotor is clockwise.

The developed torque on the rotor is clockwise, and this opposes the direc-
tion of rotation, which is counterclockwise. A prime mover is required
to supply counterclockwise torque to maintain this rotation. Mechanical
energy is delivered into this machine and converted into electrical energy.
This condition is for generator action.

7-10 PROBLEMS

7-1.

The relay mechanism in Fig. 7-4 has a saturation curve that is approxi-
mated by F = (x/K) ¢** or ¢ = (KF/x)*? where ¢ is in webers, ¥ is in
ampere-turns, x is in meters, and K = 2 X 107'°, (a) Find the stored
energy as a function of ¢ and x. (b) Find the coenergy as a function of
¥ and x. (c) Find the derivatives of energy and coenergy with respect to
the gap length x. (d) Find the mechanical force for x = 0.006 m and
¢ = 0.0016 weber.

The relay mechanism in Fig. 7-4 has reluctance given by R(x) =
7 X 10%(0.002 + x) mks units, where x is the length of the variable gap
in meters. The coil has 980 turns and 30 Q resistance. The external
voltage source is 120 v d-c. (a) Find the energy stored in the magnetic
field when the relay is OPEN (x = 0.005 m). (b) Find the energy stored
in the magnetic field when the relay is CLOSED (x = 0.002 m). (c) Find
the work done if the relay is allowed to close SLOWLY from x = 0.005 m
to x = 0.002 m. (d) Find the work done if the relay closes FAST from
x =0.005 m to x =0.002 m. (e) Find the coil current during the elec-
trical transient after the FAST closing in part (d). (f) Find the work
that must be done to pull the relay open FAST from x = 0.002 m to
x =0.005 m.
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A simple relay-type electromagnet has the self-inductance of its coil given
by: L = 1/(2 + 1000x) henry, where x is the length of the variable gap
in meters. The coil is energized from a d-c voltage source. When the
mechanism closes quickly (nearly instantaneously) from x = 0,005 m to
x = 0.002 m, the amount of mechanical work done is 0.6 joule. (a) Find
the amount of energy stored in the magnetic field before closing (i.e.,
for x = 0.005 m). (b) Find the amount of energy stored in the magnetic
field a long time after closing (i.e., for x = 0.002 m and after any electrical
transients). Hint: Construct a ¢ versus § diagram to establish ratios of
values.

A steel electromagnet is used to support a solid hunk of steel weighing
2000 Ib as shown in Fig. P-7-4. A force of 8900 newtons is required to
support this weight. The cross-section area of the magnet core (part 1) is
0.01 m%. The coil has 700 turns. Assume both air gaps are 0.0015 m
long. Neglect the reluctance of the steel parts. Neglect fringing in the air
gaps. Find the minimum current that can keep the weight from falling.

iln

n
\ \ Part 1
(fixed)

re— %

Part 2 (movable)

Fig. P-7-4.

In Fig. P-7-5, the plunger can move only in the vertical direction. Mechan-
ical stops fix the limits of travel so that 0.1 cm <x <1.0 cm. Neglect
the reluctance of the iron parts. Neglect leakage and fringing in the air
gaps. The coil has 456 turns. In steady state, the current in the coil is
3 amp. (a) Find the reluctance of the magnetic circuit as a function of the
variable gap length x. (b) Find the work done if the plunger closes FAST
from x = 1.0 cm to x = 0.1 cm. (c) Find the electric energy delivered into
the coil (in excess of copper loss) during the electrical transient that fol-
lows the FAST closing.
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cylindrical — 1.2 cm
shell |

cylindrical plunger —|

Fig. P-7-5.

For the plunger magnet in Problem 7-5, solve the following: (a) Find the
self-inductance of the coil as a function of the variable gap length x. (b) If
the plunger is allowed to move SLOWLY from x =1 ¢cm to x = 0.1 cm,
find the mechanical work done. (c) For the conditions in part (b), find
the amount of electrical energy that is supplied by the electrical source
(in excess of copper loss).

For the system in Fig. E-7-3, the inductances are as approximated:
Ly=11+4+3 cos20,L, =5+2 cos 20, M=7 cos 0 henry. The coils are
energized with direct currents. I; =1 amp. I, =2 amp. (a) Find the
torque as a function of 6. (b) Find the torque for 6 = -30°. (c) Find the
torque for 6 = +45°,

For the doubly excited device in Problem 7-7, let the current be changed
to/; =1 amp and [, = -2 amp. (a) Find the torque as a function of 6.
(b) Find the torque for § = 150°. What is its direction? (c) Find the
torque for = 210°, What is its direction? (d) Find the rotor positions
for zero torque. (e) Find the energy stored in the system as a function of
6. (f) Find the rotor position at which stored energy has maximum value.
A doubly excited machine has inductances in henrys given by: L, =
2-cos2a, L, =3 - cos2a, M=3sina, where a is a mechanical angle
measured counterclockwise from the given reference position. The cur-
rent in coil 1 (on rotor) is constant at 12 amp. The current in coil 2 (on
stator) is constant at 16 amp. With the rotor at the position for & = 60°,
find the magnitude and direction of the torque on the rotor.

A machine with two coils has inductances in henrys as follows: (on rotor)
L, =0.5, (on stator) L, =0.8, M=0.6 cos 8 where 0 is the angle of the



7-11.
7-12.

7-14.

ELECTROMECHANICAL ENERGY CONVERSION 141

rotor coil axis displaced clockwise with respect to the stator coil axis. Coil
2 (on stator) is short circuited. Coil 1 (on rotor) is energized with a sinu-
soidal current. i;(f)=2+/2 cos 377t. Resistance of the coils may be
neglected. Assume the circuit operates in sinusoidal steady state. 6 = 45°.
(2) Find an expression for the instantaneous torque on the rotor. (b) Find
the value of the average torque on the rotor. (c) Determine the direction
of this torque.

Solve Problem 7-10, but with 8 = 135°.

The machine described in Problem 7-10 is operated with the same excita-
tion and with coil 2 shorted. (a) Find the instantaneous torque as a func-
tion of rotor position 8 and time £. (b) Find the rotor positions for zero
torque. (c) Determine the zero positions toward which the torque tends
to turn the rotor.

. A simple device is depicted in Fig. E-7-5a. The labeled current directions

are for positive values of current. Let the rotor turn clockwise with con-
stant angular velocity of w rad/sec. (a) Let i, =+10 amp (d-c) and i, = 0.
Determine the voltage polarity in coil b - b’ for the instant shown with
6 =60°. (b) Let i, =+10 amp (d-c) and i, =+10 amp (d-c). Determine
the direction of the torque on the rotor for the position shown with
6 =60°. (c) For the conditions of part (b), determine whether motor
action or generator action is taking place.

For the machine in Problem 7-13, let the rotation be clockwise. (a) Let
i, =+10 amp (d-c) and i, = 0. Determine the voltage polarity in coila - a'
for the instant shown with 6 = 60°. (b) Let i = +10 amp (d-c) and
i;=-10 amp (d-c). Determine the direction of the torque on the rotor
for the position shown with 8 = 60°. (c) For the conditions of part (b),
determine whether motor action or generator action is taking place.
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Distributed Windings

8-1 FLUX DISTRIBUTION

In the discussion of transformers and also of salient-pole stators or rotors, refer-
ence was made frequently to coils formed from individual furns wound around
cores by having them connected in series. Indeed, without this possibility of us-
ing coils of many turns, no practical electromagnetic devices for power conver-
sion could be built at all.

In the examples just mentioned, all turns of a coil were wound around the
same core, forming what is also called a concentrated winding. 1t is characteris-
tic of such a winding that practically all of its flux links all of its turns. By con-
trast, the active conductors of a cylindrical stator or rotor are placed in slots; not
just one pair of slots as in Fig. 7-17 and 7-18, which would make poor use of the
material, but rather slots all over the surface like the rotor depicted in Fig. 8.1.
A winding whose active conductors are thus distributed over the surface of a
stator or rotor is called a distributed winding.

Figure 8-2 is a schematic representation of the same rotor with the conductors
symbolically represented by little circles drawn under the rotor surface. It is not
necessary, in such a diagram, to draw one such little circle for each active con-
ductor. In the case of Fig. 8-2, each circle represents all the conductors in a slot.
Together with the same number of conductors in the opposite slot, they form a
coil. So this rotor winding consists of as many coils as there are pairs of slots.

Fig. 8-1. Cylindrical rotor.

142
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Fig. 8-2. Magnetic field of cylindrical rotor.

Also shown in Fig. 8-2 are the flux configuration and the poles of this rotor.
With dots and crosses indicating the current directions for each coil, the flux
axis must be vertical and upward. But not all the lines of flux link all the coils,
which is typical for distributed windings.

Actually, the flux configuration depends on the entire magnetic circuit, and
thereby on the stator. At this point, only the simplest case of a uniform air gap
is being considered, i.e., both stator and rotor are assumed to be cylindrical. The
term uniform air gap also implies that the effect of the slots themselves on the
flux can be neglected, which means that the slots must be sufficiently small and
numerous.

The study of distributed windings is greatly facilitated if the cylindrical sur-
faces of the stator and the rotor are “developed”, i.e., rolled out to appear in
diagrams as straight lines. Figure 8-3 shows the same rotor as Fig. 8-2, but devel-
oped and facing the stator across a uniform air gap. Figure 8-4 shows the same
kind of diagram for the elementary case of a rotor with only a single coil, with
some typical lines of flux sketched and the poles marked.

From such a diagram, the flux distribution in the air gap can be approximately
obtained if the further assumption is made that the ferromagnetic material used
is ideal (u —> o), which reduces the reluctance of the magnetic circuit to the re-
luctance of the air gaps crossed by the lines of flux. (Remember the same condi-

7//////////// / 7,

Stator
Fig. 8-3. Developed surfaces.
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Fig. 8-4. Single rotor coil, flux lines.

tion of infinite permeability was imposed on the core material of a transformer
to make that transformer ideal.) This assumption also makes the magnetic cir-
cuit linear, and it is sometimes reasonably close to the truth as long as the flux
density stays far enough below its saturation value.

Using any line of flux as a path of integration, Ampére’s law can now be ex-
pressed as

Nci=‘¢.HdI~2Hg (8-1)

where g is the radial length of the air gap, and N, the number of turns of the coil
(or the number of conductors in each of the two slots). Incidentally, the evalua-
tion of the integral in Eq. 8-1 assumes not only that the core reluctance be negli-
gible, but also that the field in the air gap is uniform. Actually, the lines of flux
are in the radial direction, and the flux density at the rotor surface is slightly
higher than it is at the stator surface. With a reasonably short air gap, this dis-
tinction is rather unimportant. At any rate, the values of H and B may always
be understood as average values (i.e., taken in the middle of the air gap.)

Equation 8-1 is solved for H, and the result multiplied by the permeability of
air, making the flux density in the air gap

B~ Hole i (8-2)
2g

Thus, for the single coil and assuming a uniform air gap and ideal core material,
the flux density has the same magnitude at every point of the air gap, and it re-
verses its sign where the conductors are located. The flux distribution B versus
0 is a rectangular wave as shown in Fig. 8-5. When more realistic cases, with
more than one coil, are to be taken up, and when the resultant flux distribution
of both stator and rotor currents is to be found, this can be done, based on the
linear nature of the assumptions made, by superposition.
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Fig. 8-5. Approximate flux distribution for single rotor coil.

8-2 THE MMF WAVE CONCEPT

To analyze the operation of a given motor or generator, it is necessary to know
the flux distribution B(8), i.e., the flux density in the air gap as a function of the
space angle 8. To obtain this function, there is the method suggested in the pre-
vious section, although it is based on assumptions that are never quite satisfied
and, in many cases, are not even good approximations. There are also sophisti-
cated methods of flux mapping by digital computation, based on the concept
of the magnetic vector potential, but even these methods are not absolutely rig-
orous (for one thing, they are two-dimensional and thereby neglect “‘end ef-
fects”), and they call for big expenditures of preparation and computing time to
produce results valid for just one machine.

Much of this can be avoided, at least for the purpose of gaining an understanding
of the subject, by introducing another function of 8, called the mmf wave and
defined as

F0O)=1% yg H®)d! (8-3)*

where H(0) is the magnetic field intensity at some point (described in terms of
the angle 8) of the air gap, and where the path of integration is the line of flux
that crosses the air gap at that point. Obtaining this function requires no as-
sumption about the shape of the air gap nor is there any need to disregard the
reluctance of the core. Even better, the mmf wave is a linear function of the
currents, so that superposition is a correct method of obtaining a resultant mmf
wave from its components. As for the factor % in Eq. 8-3, it simply assigns one-
half of the loop integral to each of the two poles.

*For fractional pitch windings (see section 8-6) this definition must be modified, but
methods of finding and using the mmf wave remain valid.
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Fig. 8-6. Mmf wave for single coil.

Starting again with the single coil of Fig. 8-4, and using Egs. 8-1 (without its
approximate expression) and 8-3, the magnitude of the mmf wave is

FO)=1iN.i 8-9)

The corresponding graph of Fig. 8-6 is identical with that of Fig. 8-5 except for
a scale change, but the point is that the mmf wave, in contrast to the flux distri-
bution, is not an approximation based on various assumptions. The only inac-
curacy still present in the graph of Fig. 8-6 is that it is drawn as if the conduc-
tors were of infinitesimal size. This was done only as a matter of convenience,
not of necessity; the actual size of the conductors could be taken into considera-
tion by “tilting” the vertical lines to give them finite slopes whereby the rectan-
gular wave would be changed into a trapezoidal one. The benefits obtained from
this correction would not justify the complication, and we shall stick to the ver-
tical lines in all such diagrams.

Incidentally, positive values were assigned in this graph to those parts of the
wave for which the lines of flux are directed from the stator to the rotor. This
is, of course, an entirely arbitrary choice. The next step to be taken is from a
single coil to a winding consisting of several coils. Figure 8-7 depicts a developed
rotor with three coils, and it shows poles and some typical lines of flux. It is

Rotor
( B ( )
0=0 . * 0=360°
4 3
Nloletelslelalal
o J L J
Stator

Fig. 8-7. Three rotor coils and flux lines.
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Fig. 8-8. Mmf wave for three coils.

only a sketch based on an assumed uniform air gap, but the mmf wave for this
rotor, shown in Fig. 8-8, is valid regardless of the shape of the air gap.

There are several ways to obtain diagrams like that of Fig. 8-8, for any distri-
buted winding. One method, already mentioned, is superposition, i.e., adding
the ordinates of diagrams drawn for each coil (like Fig. 8-6, but displaced hori-
zontally against each other). Another way is first to draw a diagram like Fig. 8-7,
including typical lines of flux. For instance, in that figure, it is clear that every
line crossing the air gap between 6 =0 and 6 = 30°, links 3N,i At, so that, for
0<6<30° F(0)=3N,i/2, etc. Finally,by either one of these two methods it
soon becomes clear that the mmf wave consists of steps, each one having the
magnitude N,i7, at that value of § at which the conductors are located. So the
wave may be drawn as a sequence of such steps, starting at any arbitrary value
for (0) and putting the horizontal axis at the end of the operation into such a
position that the wave has an average value of zero.

Many windings are more finely distributed, i.e., in more than six slots. The
mmf wave then becomes a train of many small steps, always half of them posi-
tive and the others negative. For instance, Figs. 89 and 8-10 are drawn for a
winding of six coils (twelve slots, at 8 = 15°,45°,75°, etc.)

The process can easily by continued, with the result that the mmf wave gets to
be closer and closer to a triangular wave (the broken line in Fig. 8-10), while the
current distribution approaches more and more that of a uniform current sheet.
In thus going to the limit, the individual currents disappear, and in their place,
there appears another function of the space angle 0, the angular current density

Rotor
s
D EOOIEOEOIRRIRIVNRRX R

N
Stator

Fig. 8-9. Six-rotor coils.
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Fig. 8-10. Mmf wave for six coils.

J(0), expressed in amperes per radian. For a uniform current sheet, the angular
current density is a rectangular wave. Regardless of the shape of J(6), the dis-
crete steps of the mmf wave become infinitesimal, with a magnitude J(6) d¢, and
the mmf wave itself changes from the sum of its steps to the integral

F(0)= Jf J(6) do (8-5)

where the integration constant has to be chosen so as to give the wave an average
value of zero. Equation 8-5 and its inverse

d¥(0)

J(6)= 20

(8-6)
remain valid also for a nonuniform current sheet, as well as for discrete currents
(in which case the function J(8) would be a train of impulse or delta functions).

We have now introduced three different functions of the space angle 6: the
flux distribution B(6), the mmf wave F(8), and the angular current density J(6).
They are all periodic functions of @, with the period 2m, because adding 27 (or
any multiple of 2m) to any value of 8 does not change the values of these func-
tions. Therefore, Fourier analysis can be applied to each of these functions;i.e.,
they can be expressed as series of sinusoidal functions of @, called the space
fundamentals and space harmonics. The reason for doing so is that the opera-
tion of addition as well as that of differentiation (and integration) is much easier
to perform with sinusoids than with most actual waveshapes. Furthermore, due
to the linearity of the operations involved, equations like

¥ (o)resultant = f}.(o)stator + ?(e)rotor (8 '7)

are valid not only for the waves themselves but also for their space fundamen-
tals and each of their space harmonics.
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The reader will see later that it is normally desirable that the flux distributions
of a-c motors and generators resemble the sinusoidal waveshape rather than the
rectangular one of a concentrated winding or the triangular one of a uniformly
distributed winding. Windings can indeed be designed and air gaps shaped to
accomplish this purpose.

Most of the following discussions, being mainly preparatory to the study of
a-c machines, are based on the assumption of sinusoidal mmf waves. This does
not mean that the space harmonics must be neglected. Whenever it is considered
worthwhile, their effects can be studied by the same methods as those of the
space fundamentals, since they are also sinusoids. Such effects are, however,
mostly left for more advanced studies.

8-3 NUMBER OF POLES

All the stators and rotors described so far in this and the previous chapter have
one thing in common: they have two poles (north and south), whether salient or
not. This might seem to be perfectly natural. But actually, the majority of
motors and generators are built with several pairs of poles. Figure 8-11 illustrates
the idea, being a sketch of a four-pole machine with a cylindrical stator and a
salient-pole rotor. Only the rotor conductors are shown in the picture, and
broken lines are used to indicate typical lines of flux.

For another example, Fig. 8-12 shows a cylindrical rotor with a distributed
winding for six poles. (Any even number of poles is possible, with north and

Fig. 8-11. Four-pole machine.
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Fig. 8-12. Sme=polarotor,

south poles always alternating.) What produces the poles in'the case of a distri-
buted winding is the direction of the currents, indicated in the figure by the
usual dots and crosses. Each turn of a coil contains two active conductors with
currents in opposite directions. The two conductors forming a turn are located
at a distance of one-sixth of the circumference (for this case of six poles) from
each other. It follows that the connections in front and back of the paper (ie.,
the inactive conductors) can be shortened and material saved thereby if a larger
number of poles is used. There are more compelling reasons for the designer to
choose a certain number of poles, as will be shown shortly.

Figure 8-13 shows the mmf wave of a winding like that of Fig. 8-11, and also
the space fundamental of that wave. There is something redundant about that
diagram: one-half of it would be quite sufficient, as long as the number of poles
is known (and even that is indicated by the abscissa scale). The shortest angular
distance about which these waves are periodic is 7 rather than 2m, so the space
fundamental is a sinusoidal function of 26, or generally, for p poles, of (»/2) 6.
For these and other reasons (which will become clear soon), it has been found
convenient to use an angular scale at which the period is always 2, regardless of
the number of poles. This requires the introduction of new units, called elec-
trical radians or electrical degrees, in contrast to the mechanical units (radians or
degrees) in which a space angle is conventionally expressed. The relation is

14
Gelectrical = —2_ emechanical (8‘8)

where p is the number of poles. For instance, Fig. 8-14 shows the space funda-
mental of a six-pole mmf wave (could be that of the winding of Fig. 8-12) with
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Fig. 8-13. Mmf wave and its space fundamental for rotor of Fig. 8:11.
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Fig. 8-14. Electrical and mechanical degrees for six poles.

abscissa scales in mechanical and electrical degrees. The angular distance from
the axis of one pole to the axis of an adjacent pole is always 180 electrical
degrees.

8-4 THE FLUX PER POLE

The mmf waves of the windings on the stator and the rotor are 4ll linear func-
tions of their currents. Therefore, superposition is a correct procedure, and the
sum of these waves is the resultant mmf wave. This is the one that produces the
flux distribution B(8).

Let it now be assumed that the flux distribution is sinusoidal, or that its space
harmonics are not to be considered. With an arbitrary choice of the origin of the
0 axis, the flux digtribution can then be expressed by the equation

B(B‘Q) = Bpeak sin 0‘& (8'9)
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Fig. 8-15. For the calculation of the flux per pole.

where the subscript peak is used to indicate the maximum value of a periodic
space function, in contrast to max, which indicates the maximum value of a
periodic time function.

Note that all the lines of flux between 6, = 0 and 6,9 = 7 have the same direc-
tion. They all belong to the same pole, and their sum is called the flux per pole

6= f B(6)dA (8-10)
A

where the area element dA4 can be seen as the shaded area in Fig. 8-15

21
dA=lrdf e =;5 do g 8-11)

Equations 89 and 8-11 are now substituted into Eq. 8-10

" 21 1 T Al
¢ =J. Bpeak sin 04 'p—r do‘g = - '2'p—r Bpeak COS 9&] = 7 Bpeak (8-12)
0

o]

Incidentally, this result could also have been obtained by multiplying the average
flux density B,y = (2/m)Bpeax by the cylindrical area per pole A = Ir2n/p.

85 MOTIONAL VOLTAGES IN ROTATING MACHINES

There is a voltage induced in every conductor that moves relative to the flux,
and it can be expressed by Eq.7-3: e = Blu. However, rotating motion (see Sec-
tion 7-6) is described in terms of the angular velocity
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do
Wmech = ;:Ch (8-13)

or, sometimes, in terms of the traditional unit of revolutions per minute (rpm).
Since there are 2 radians per revolution, the rotating speed in rpm is

60 dOmeen
=— —== 8-14
” 2 dt (8-14)
The relation between the velocity « and the angular velocity wmech is
d(ro
u= ( dn;ech) = I'Wmech (8'1 5)

where r is the radius, i.e., the distance from the axis of rotation to the conductor,
or, preferably, to a point midway between stator and rotor surfaces. This mid-
dle value of r is also that to which all values of () and B(#) belong, and so it
can be used for all conductors, both on the stator and on the rotor.

There is a choice among several possibilities to be considered: there can be
conductors moving past a stationary flux; but there can also be a flux moving
past stationary conductors, and there can even be a flux moving past conductors
that move at a different speed. These three cases are equivalent to each other
because it is the relative motion that counts with regard to the induced voltage.
Each of the three cases will be encountered when specific types of electric mach-
ines are studied in chapters to follow. But at this point, it is sufficient to discuss
the first case. ‘

Consider, then, a single conductor moving at a velocity expressed by Eq. 8-15
and a flux distribution in accordance with Eq. 89. The voltage induced in this
conductor is

e = Blu = (Bpeak Sin 0,0) I(rwomecn) 8-16)

It is neither logical nor convenient to have both mechanical and electrical units
in the same equation. So the angular velocity is also expressed in electrical units

- deoJZ _p demech = _p_

=2 mech 8-17
We dr 2 dt 2 Wmech ( )
whereby Eq. 8-16 is changed into
21
e= 7’3,,%,( cagsin b9 (8-18)

A simpler expression results from introducing the flux per pole (from Eq. 8-12)

e=3pwyesinby (8-19)
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This is the instantaneous value of the motional voltage induced in a conductor
when it is located at the angular position 6. In the steady state, the conductor
is moving at a constant angular velocity. Let the origin of the time axis be chosen
arbitrarily so that the conductor is located at 8,9 =n/2 when ¢ = 0. Then its lo-
cation at the time ¢ is

6= fz- gt (8-20)

which leads to the following expression for the steady-state voltage as a function
of time

1 1
e= E(I)w& sin (g—- + w&t) = 5¢w‘g COS W,of (8-21)

This result applies to a single conductor. A coil consists of N, conductors in
one slot and another N, conductors in a slot located at a distance of = electrical
radians from the first slot. At these two locations, the flux density has the same
magnitude and the opposite direction. Therefore, the voltages are equal and op-
posite, e.g., into the paper for one conductor and out of the paper for its coun-
terpart in the other slot. The series connection of these two conductors (in
front or back of the paper) forms a tum in which the induced voltage is twice
that of the single conductor. The coil is a series connection of N, turns, which
raises its voltage to

# o €c =N pw 4 cos w ot * (822)

The fact that this voltage is a sinusoidal time function is entirely due to the as-
sumption that the flux distribution is a sinusoidal function of space. If the space
harmonics of the flux distribution are considered, then the voltage wave contains
time harmonics; in fact, the waveshape of the voltage induced in a coil (not that
of the voltage induced in a distributed winding, however, as will be shown in the
next section) as a function of time is the same as that of the flux density as a
function of the space angle. The desire to have a sinusoidal flux distribution,
mentioned in Section 8-2, is now explained as the desire, basic to power systems
engineering, to obtain a sinusoidal steady-state voltage.

Equation 8-22 also shows that the angular velocity of the motion, when ex-
pressed in electrical units, is identical with the radian frequency w g = 2nf of the
voltage. This is one more reason why electrical units are used for 8 and w.

Another thing seen in Eq. 8-22 is the voltage amplitude

Emax =Nc¢w& (8-23)

So the rms value of the voltage can be written as

E 2
E= \’}‘;_" = \/—;:Nc¢f= 444 N, of (8-24)
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The similarity of tRis equation t&¢he transformer voltage in Eq. 4-25 is rio mere
coincidence. After all, both are derived from Faraday’s inducuon law. But the
flux ¢ in Eq. 8-24 is a censtant flux, sinusoidally distributed in space and in rela-
tive motion to the coil, whereas ¢y, in Eq. 4-25 is the maximum value of a sta-
tionary flux, which varies sinusoidally with time.

One further comment on the voltage equation, Eq. 8-24, refers to the way it
was obtained. The derivation was based on the Blu formulation of Faraday’s
law, with an assumed sinusoidal flux distribution. Actually, all active conduc-
tors are located in slots, whereas most of the lines of flux must go through the
high-permeability teeth between the slots and not through the slots. So it could
be argued that only a comparatively low value of flux density, that existing in
the slots, should be used in the calculation of the voltage.

This argument has long been refuted, both by observation and by using the
other method of calculating the voltage, namely that of the rate of change of
flux linkages. The reader is invited to work out problem 8-10 and thereby to
satisfy himself that both forms of Faraday’s law, Blu and d\/dt, lead to exactly
the same result. In other words, when a coil moves relative to a given flux, the
induced voltage is the same whether the conductors of that coil are placed in
slots or not.

8-6 WINDING FACTORS

A distributed winding, as introduced at the beginning of this chapter, is a series
connection of several coils, located in different pairs of slots. Therefore, the
voltage induced in the entire winding is the sum of the coil voltages. In the sinu-
soidal steady state, the coil voltages all have the same magnitude (they have the
same number of turns) and frequency (they move with the same speed relative
to the flux) but they are not in phase with each other.

Consider two coils, called No. 1 and No. 2, respectively, moving at a constant
angular velocity relative to the flux, and let the choice of reference made for Eq.
8-20 be valid for the conductors of coil No. 1:

01

= % + ot (825)
which results in the voltage of this coil being in the axis of reference:

ey =N pw g cos wyt (8-26)

The slots of coil No. 2 are displaced against those of coil No. 1 by an angle a.

Therefore, the location of the conductors of coil No. 2 as a function of time is

0s,

TT
Q=5 Togt wet 8-27)
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where the choice of plus or minus depends on whether coil No. 2 is ahead of or
behind No. 1 with respect to the direction of motion. The same derivation of
the coil voltage as before leads to the result

ey =N pw,g cos (wet *ay) (8-28)

Note that the phase difference between coil voltages equals the space angle be-
tween their slots, provided this angle is expressed in electrical units.

The addition of coil voltages is illustrated by the phasor diagram of Fig. 8-16.
This diagram is drawn for three coils but its notation has been chosen to make it
valid for ¢ coils (any whole number of them), with the angular distance « be-
tween adjacent coils. The coil voltage phasors are E, , E;, etc., and their perpen-
dicular bisectants are seen to intersect at a point 0. The distance from this point
to the beginning or end of any coil voltage phasor is called b, and the phasor sum
of all the coil voltages is called E. The diagram shows that

Ey=2bsin g— (8:29)
and, for ¢ coils,
. ca
E=2bsin 7 (8-30)

Clearly, the magnitude of the phasor sum E is less than the algebraic sum cE, .
The ratio of these two values is, therefore, always less than unity, and this ratio
is introduced as a correction factor called the distribution factor k;. From the
last two equations,

si ca
n—
E 2
k;j=—= -
d o, " a (8-31)
Csm‘z‘

Fig. 8-16. Phasor diagram of coil voitages.
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With the aid of this factor, the magnitude of the total steady-state voltage in-
duced in a distributed winding consisting of ¢ coils can be written in terms of the
total number of turns of that winding

N=cN, (8-32)

The idea is to multiply the coil voltage of Eq. 8-24 by the number of coils ¢,
which gives the algebraic sum, and then to correct for this error by means of the
distribution factor:

E =4.44 Nkyof (8-33)

In principle, slots can be distributed around the entire circumference of a rotor
(or stator). For a single-phase winding, this means that the space angle ca can
approach 180 electrical degrees. In that case, however, the distribution factor
becomes rather low. It is not difficult to see why. A diagram like that of Fig.
8-16, but with the angle ca approaching 180 electrical degrees, would show that
the voltages induced in the first and last coil of the winding are almost in phase
opposition. Thus, together they contribute very little to the total voltage, at any
rate not enough to justify their cost. Experience has lead to designs with slots
covering only about two-thirds of the circumference as the most economical
compromises. For three-phase windings, however, the whole problem cannot
arise because, as the reader will see a little later, the angle ca cannot exceed 60
electrical degrees anyway.

Another aspect of the distribution factor refers to the waveshape of the in-
duced voltage. The waveshape of the voltage induced in the entire winding is
better (i.e., more nearly sinusoidal) than that of the coil voltage. To understand
this, consider, for instance, the third harmonic of a coil voltage.* It is caused-by
the third harmonic of the flux distribution. This is a wave with three times as
many peaks (poles) as the fundamental. So the angle « in electrical degrees is
three times as much for the third harmonic as it is for the fundamental. For in-
stance, two slots whose distance from each other is 60° for the fundamental, are
180° apart from each other for the third harmonic. Consequently, the distribu-
tion factor for the third harmonic (which is most likely to be the largest of all
harmonics) is much less than that for the fundamental.

A further cleansing of this voltage wave (i.e., further reduction of its harmon-
ics content) is possible by the use of fractional-pitch windings. In such windings,
the distance between the active conductors of each turn is less than 180 electrical
degrees. The voltage induced in any turn is the sum of the two conductor volt-

*Incidentally, there are no even harmonics in the waveshapes of voltages induced in rotat-
ing electric machines, due to the half-wave symmetry of such voltages. This, in turn, is the
consequence of the symmetry of design, which provides the same magnetic circuit for each
pole, north and south alike.
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ages. For a full-pitch turn,
Eturn = Econd [0° - Eond [180° =2E ong (8-34)

For a pitch of < 180°, the turn voltage can be determined in a straightforward
way, without recourse to geometry:

Eturn = Econd [0° - Econd [8 = Econa (1 - cosf - jsin f) (8-35)
with a magnitude
Eturn = Econd \/(1 - cos f) + (Sin B)? = Econa V2 - 2cosf (8'36)

Using the trigonometric identity

1 - cos 2x =2 sin’x
the magnitude of the turn voltage becomes
Eturn = Econa V4 sin2 2 = 2E 44 sin §/2 (8-37)

This leads to the definition and calculation of the pitch factor

E.o; E
k. = coil _ Cturn _ o B/2 8-38)
P 2N Econa 2Econd (

For reasonable values of 8, this is only a few percent less than unity. But when
it comes to the harmonics in the voltage wave, the angle § is multiplied by the
order of the harmonic, and the pitch factors for the harmonics most prominent
in the flux distribution are much smaller. Thus, the use of a fractional-pitch
winding results in an induced voltage of slightly reduced magnitude but improved
waveshape. Since such windings also offer some saving of material, due to the
shorter end connections (i.e., the inactive conductors), they are used quite ex-
tensively. Examples 8-1 and 8-2 are typical illustrations of distribution factors
and pitch factors for fundamentals and harmonics.

Distribution factor and pitch factor can be combined. Their product is called
the winding factor

kw=kak, (8-39)
and Eq. 8-33 is then modified to make it valid for any winding, full- or fractional-
pitch:

E =444 Nk, of (8-40)

This equation is basic for all a-c generators and motors. The product of the
turns number V and the winding factor is sometimes referred to as the effective
number of turns.
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8-7 THE ELECTROMAGNETIC TORQUE

The reader remembers that an electromagnetic force is exerted on a current-
carrying conductor in a magnetic field. For currents flowing in the axial direc-
tion (i.e., parallel to the axis of rotation) in a field whose direction is radial, the
direction of the force is tangential, and Eq. 7-6 (F = Bli) is applicable. For rotat-
ing motion, the pertinent quantity is the torque T = Fr = Blir, where the mean-
ing of r (radius) is the same as explained in the context of Eq. 8-15.

The following derivation is for the case of one or more distributed windings on
the rotor. The total torque exerted on the rotor is the sum

T=) (Blir=Ir 3_ (B) (8-41)

To allow for any kind of current distribution, use will be made of the concept of
angular current density J(8), introduced in Section 8-2. This method deals with
infinitesinal current elements J(8) df instead of discrete currents, and it replaces
the sum by the integral

T=Ir f o B(6)J(0) do (8-42)
]

It is understood that the space angle 0 is expressed in electrical units, so that the
space fundamentals of B(6) and J(#) become sinusoidal functions of @, not of
(p/2)8. That is why the upper limit of the integral is pm, which includes in the
integration all conductors around the circumference of the rotor. The subscript
<L will be considered unnecessary and will be omitted for the remainder of this
chapter.

Analytical expressions for B(#) and J(8) depend on the origin of the 6 axis.
The choice made for Eq. 8-9 will be used again, so

B(6) = Bpeay sin 0 (8-43)

The other space function, J(#), has its own peak value, and that is presumably
not located at the same angular position as that of B(6). It will be found useful
later on to write

J(8) =Jeay cos (8 - 8) (8-44)

These two functions are substituted in the torque equation
pm
T= erpeakaeakf sin 8 cos (6 - 6) df (8-45)
0

Using the trigonometric conversion

sin x cos y = 3 [sin (x + ) +sin (x - )] (8-46)
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the torque becomes

pm
T =L IrBpeaxJpeak f [sin (26 - 8) +sin 8] dO (8-47)
0

Since p is a whole number, the first term becomes zero after the substitution of
the integration limits. The remaining term is the resuilt

T= % PIrB,yeaie] pea Sin 8 (8-48)

It is also possible to introduce the flux per pole from Eq. 8-12 and thereby ob-
tain an alternate form of the torque equation

T= g;ﬂ 0J peai Sin & (8-49)

In either form, the torque equation shows, as might be expected, how the elec-
tromagnetic torque results from the interaction between the electric current and
the magnetic flux. In addition, there is an all-important factor sin 6. What is the
significance of the angle §?

To answer this question, we first refer to Eq. 8-5 and thereby introduce the
mmf wave into this discussion

F(0) = | J(0) dO = Jpeq sin (6 - 8) (8-50)

Comparison between Eqgs. 8-43 and 8-50 shows that § is the angular distance be-
tween the space fundamentals of ¥(8) and B(#). So there must be an angular
difference between these two waves, or else there is no torque!

There are two possible reasons why such an angle may exist. It must be real-
ized that F(6) is the mmf wave produced only by the rotor currents (because it
was derived from J(6), which was defined in this section as the angular density
of the rotor currents), whereas B(0) is the distribution of the actual flux, which,
in general, is produced by rotor and stator currents together. In the absence of
stator currents, the angle § can exist only if the stator has salient poles.

Figure 8-17 illustrates this case. Diagram (a) shows the developed surfaces,
with (for simplicity’s sake) only one coil on the rotor. Diagram (b) is a sketch of
the mmf wave and the flux distribution. The mmf wave has the rectangular
shape familiar from Section 8-2 (see Fig. 8-6). The flux distribution, drawn as a
broken line, would be similar to the mmf wave except for the effect of the sa-
lient poles. Between the stator poles, the air gap is so much larger than at the
pole surfaces that it reduces the flux density to a small fraction of what it is at
the pole surfaces.
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Fig. 8-17. (a) single coil on rotor, no conductors on salient-pole stator; (b) Mmf wave and
flux distribution. -

Now visualize (no need to calculate) the space fundamentals of the two waves.
That of () has its peaks midway between the two coil sides whereas that of
B(0) has its peaks further to the left (at 90° and 270°). So there is an angle and,
thus, a torque. This is the reluctance torque encountered in Chapter 7, but here
it is demonstrated without recourse to linear approximations, and, needless to
say, not limited to the single coil of Fig. 8-17. This torque can also be viewed
as the result of the attraction between the poles of the rotor flux and the poles
of induced magnetism on the stator. The direction of the torque is such that it
tends to line up these poles against each other, to turn the rotor toward the rest
position in which § = 0 and, thus, T'=0.

The other possible reason for the existence of a torque angle 8 is that there are
currents on both the stator and the rotor, and that the space fundamentals of
their mmf waves have their peak values at different angular positions. Figure
8-18 illustrates such a case. If there are no salient poles, the space fundamental
of the flux distribution (not shown in the picture) will be in the same position as
the resultant mmf wave; these two waves will differ only by a scale factor. Thus,
the torque angle is the angular difference between the rotor mmf and the resul-
tant mmf, as indicated in the diagram. If the two component mmf waves are in
the same position, then the resultant mmf wave and the flux distribution are in
the same position, too, and there is no angle §, and, thus, no torque.

So the torque in the case illustrated by Fig. 8-18 can again be viewed as the re-
sult of the attraction between stator and rotor poles, as their tendency to “line
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Fig. 8-18. Addition of mmf waves.

up” against each other. It can also be seen as the result of interaction of stator
and rotor currents, or, as it was done in Section 7-8, on the basis of linear ap-
proximations, in terms of the mutual inductance as a function of the rotor
position. Finally, a torque angle § can also exist as a consequence of both
causes (salient poles on the stator, and currents on both stator and rotor) acting
simultaneously .

The derivation and discussion of the torque equation in this section was all
done in terms of the rotor mmf wave and the flux. But what would have been
the difference if the word rotor had consistently been replaced by the word
stator? The result (Eqs. 8-48 and 8-49) would have been the same, but it would
have represented the magnitude of the torque exerted on the stator, the angle §
being the space angle between the fundamentals of the flux distribution and the
stator mmf wave. The stator cannot move but it exerts, by the principle of ac-
tion and reaction, an equal and opposite torque on the rotor. In other words,
the torque on the rotor can be expressed either in terms of the rotor mmf and its
angular difference against the flux, or in terms of the stator mmf and izs angular
difference against the flux.

It must also be mentioned that the use of the Bli force equation on which all
the calculation in this section is based, remains correct in spite of the fact that
the conductors are located in slots where the flux density is only a small frac-
tion of the value assigned to B(8) in the air gap. The situation is similar to that
of the use of the Blu form of Faraday’s induction law (see the last two para-
graphs of Section 8-5). For the electromagnetic torque, specifically, it has re-
peatedly been established that calculations based on Bl lead to the correct re-
sult, but that the torque so calculated is mostly exerted on the rotor core, not
the conductors.

It is well worthwhile to take another look at the torque equations, and espe-
cially on the factor sin §. (That angle §, incidentally, is often referred to as the
torque angle.) Since the torque depends on that angle that is the space differ-
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ence between the rotor (or stator) mmf and the flux density, it may well be
asked how any machine can ever operate at a constant steady-state torque. Does
not the rotor mmf have to move relative to the stator mmf? Does this not con-
tinuously change the angle §?

For one thing, in a d-c machine, both the rotor mmf and the stator mmf waves
are stationary, as will be shown in a later chapter. Next, in polyphase a-c ma-
chines, both the stator and rotor currents produce rotating mmf waves, and that
will be the subject of the next section. That leaves single-phase a-c machines,
and in those, there is indeed no way for the torque and power to be other than
pulsating, as the reader may remember from Section 6-2.

8-8 THE ROTATING FIELD

It is a property of polyphase windings that their currents, when they are balanced,
produce a rotating mmf wave. The term polyphase is used because this state-
ment is valid for any number of phases. Nevertheless, the following analysis is
done only for the most important case, that of three phases.

A three-phase winding consists of three single-phase windings in which a sym-
metrical system of voltages is to be induced. Therefore, these three windings
must have equal numbers of turns and equal winding factors (so the voltages will
have equal magnitudes), they must move at constant angular velocity relative to
a magnetic flux (so the voltages will have the same frequency), and they must be
located 120 electrical degrees apart from each other (so the voltages will be 120°
out of phase with one another). It is easy enough to see that such windings can
also be placed on a stator and have their voltages induced by a rotating magnetic
field produced by rotor currents. What is not obvious at all is that balanced cur-
rents in stationary windings themselves can also produce a rotating magnetic
field.

In Fig. 8-19a, the location of the three windings on the stator is indicated.
The symbols @ and &' belong to conductors forming a full-pitch coil of phase a;
similarly, b and b’ represent phase b, etc. The windings may be presumed to be
distributed, with the conductors drawn in the diagram located at the center of
“phase belts” covering arcs of 60° each. The dots and crosses indicate assumed
positive directions, like the familiar current arrows in circuit diagrams. All
angles are in electrical units, so the diagram represents the fraction 2/p of the
circumference.

Using the current in phase a as the axis of reference, and assuming the phase
sequence to be a - b - ¢, the currents in the three windings can be written as

iy = Inax cOS Wt
iy = Imay cos (wt - 120°%)

iy = Ipay cos (wt - 240°) (8-51)
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Fig. 8-19. (a) three-phase stator winding; (b) mmf wave at t = 0; (c) mmf wave at t = 6—— :
- w
(d) mmf waveatt = — .
3w

The magnitude of an mmf wave depends on the current that produces it.
Therefore, an mmf wave produced by a time-varying current is a function of
both the space angle 0 and the time ¢, to be denoted F(6, ). Specifically, at the
instant ¢ =0, when the current i, has its positive maximum value, the space
fundamental of its mmf wave is

$,(0,0) = F peak sin 0 (8-52)

because the location of the winding is such that the positive peak value of its
mmf is located at § =90°. This wave is drawn in Fig. 8-19b, together with the
space fundamentals of the mmf waves of the other two phase currents for the
same instant. These curves are obtained by shifting 5, (8, 0) to the right by 120°
and 240°, respectively, and multiplying its values by (-1) because, at # = 0, both
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ip and 7, have the value (—%Imax ). Finally, Fig. 8-19b shows the resultant mmf
wave for that instant

¥6,0)=%,0,0)+ F,06,0+ F.(6,0) (8-53)

The procedure is repeated in Fig. 8-19c¢ for the instant one-twelfth of a period
later, i.e., when wt = 30°, or # = /6. At that instant, i, = (/3 /2)]yax, ip =0,
and i, = (-v/3/2)I nax, and the diagram shows the three (actually two, since one
of them is zero) component waves and the resultant wave for that instant. Again,
after another one-twelfth of a period has passed, at ¢ = n/3c, the current values
are I, = %Imax, ip = %Imax, and i, = -1y, and Fig. 8-19d shows the corre-
sponding mmf waves, components and resultant.

The procedure can be repeated for any other instant (the reader should try it
for himself, e g., for ¢ = n/2w), leading to the observation that the resultant mmf
wave always has the same magnitude, and that it moves steadily to the right,
covering the space angle 27 in a full period. That this observation is indeed cor-
rect, will now be proved by an analytical method.

Return to Eq. 8-52, which is the mmf wave F, at the instant ¢ = 0, when iy has
its positive maximum value. At all times, ¥, is proportional to i,. Thus

¥.(6, 1) = Fpeak sin 0 cos wt (8-54)

It is worthwhile to stop at this point, and to discuss this equation in some
detail:

(a) For any specific value of time, say at ¢ = ¢¥*,
Fa0,1*) = Fpeax cos wit*sin 0 (8-55)

This is an instantaneous picture, a snapshot (like the curves in Fig. 8-19). Itis
seen to be a sinusoidal function of # whose peak value depends on the choice of
the instant #* but whose position remains the same at all times.

(b) For any specific value of the angle, say for § =6*

F,(0%,t) = Fpeax sin 6* cos wt (8-56)

This is what a stationary observer, placed at the location 6 *, would record. It is
a sinusoidal time function whose amplitude depends on the chosen location of
the observer, but whose phase angle is the same at any location.

A function of time and space represented by an equation like Eq. 8-54 is known
as a standing wave. It is characterized by the fact that its peak values always
remain at the same location;in the case under study, at 8 = 90° and 6 = 270°.

The other two currents produce similar standing mmf waves, with the same
peak values, but displaced in space. The peaks of F,(0, t) are located at 6 =
210° and 0 =30°, displaced by 120° against those of F,(0, f). (Note that 30°
has been written in lieu of 390°.) The peaks of ¥.(@, ¢) are located another
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120° to the right, at & =330° and 6 = 150°. The equations of these two waves

are
F,(0,1) = Fpeax sin (6 - 120°) cos (wt - 120°) (8-57)

and
F.(0, 1) = Fpeax sin (8 - 240°) cos (wt - 240°) (8-58)

The resultant mmf wave is thus
F(0, )= Fpeax [sin 0 cos wt + sin (8 - 120°) cos (wt - 120°)
+sin (8 - 240°) cos (wt - 240°)] (8-59)
With the aid of the trigonometric identy
sin x cos y = 5 [sin (x + ) +sin (x - y)] (8-60)
this can be put into the form
F(0,7) = % Fpeax [sin (0 + wt) +sin (0 - wi)
+sin (6 + wt - 240°) +sin (0 - wt)
+sin (0 + wt - 480°) +sin (8 - wt)] (8-61)

Of the six terms inside the bracket, the three written on the left side form a sym-
metrical set of sinuosoids whose sum is zero. (The situation is similar to that en-
countered in the derivation of three-phase power in Section 6-4.) That leaves
the other three terms, and so the final result is

¥0,)= % Fpeak sin (6 - wi) (8-62)

This, again, deserves a closer look:
(a) The snapshot, at the instant ¢ = ¢t*:

F(O,1*) = 3 Fpea sin (0 - wt®) (8-63)

This is a sinusoidal function of 8 whose position changes if the chosen instant ¢*
is changed, but whose peak value always remains the same. (Note how different
the properties of the snapshot of the standing wave are.) Some such snapshots
are drawn in Fig. 8-19.

(b) The stationary observer at the position 6 = 6*:

F(O0*, 1) = 3 Fpeax sin (6% - wi) (8-64)
which can also be written
FO*, 0= -% Fpeak sin (wz - 0%) (8-65)

This is a sinusoidal time function whose phase angle depends on the position of
the observer, but whose amplitude is the same regardless of that location. (Again,
note the contrast to the standing wave.)
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(c) It is also instructive to check what a moving observer, traveling at the con-
stant angular velocity w, would record. The location of such as observer is

0=0,+wt (8-66)
and so his observation is

FOo+wt, = % Fpeak sin 0 (8-67)

which is a constant! It depends only on the initial location 8, of this observer
who remains always in the same position relative to the wave.

Many readers have known before that Eq. 8-62 describes a traveling wave.
Standing waves and traveling waves occur in many fields of science and engineer-
ing. Where such waves are encountered in the study of electric motors and gen-
erators, the space variable is not distance but angle; the waves travel in circles,
they are rotating waves (with the exception of the “linear” motors mentioned at
at the end of Section 7-6).

Some further observations can be made either from Eq. 8-62 or from the curves
of Fig. 8-19:

(a) This rotating field happens to move in the positive direction (from left to
right on the diagrams). It would travel in the opposite direction if either the
phase sequence of the three currents or the space sequence of the three windings
were reversed.

(b) The speed of rotation is very significant. Since the field travels the angular
distance of 27 electrical radians during each period, its angular velocity is w elec-
trical radians per secomd. It is said to rotate at synchronous speed. It is a bene-
fit of the use of electrical units that the same symbol stands for both the radian
frequency of the currents and the angular velocity of the field.

(c) The location of the peak of the traveling wave at the instant when the cur-
rent of one phase has its positive maximum value is the same as the location of
the peak of the standing wave of that phase.

(d) Last, but not least: the peak value. In contrast to the other properties of
the rotating field, this one depends on the number of phases. For three phases,
Eq. 8-62 as well as the diagrams of Fig. 8-19 show that the peak value of the re-
sultant mmf wave is % times the maximum peak value of each of the standing
phase mmf waves. (The peak value of a standing wave is time-varying. Maxi-
mum peak value means the peak value at the instant when it is largest.)

In the case of two phases, which will also be of some interest in later chapters,
the phase currents are 90° out of phase with each other, and their windings must
be placed 90 electrical degrees apart from each other in space. Both the graphi-
cal approach and the analytical derivation are much simpler then for three phases,
and the reader is advised to try them both. The result is that the peak value of
the resulting rotating mmf wave equals the maximum peak value of the standing
mmf wave of each phase.
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For more than three phases, diagrams like those of Fig. 8-19 become more and
more crowded and difficult to draw, but the analytical procedure works well.
For m phases (m = 3), there is a phase difference of 2n/m between adjacent
phase currents, and the same angle in electrical units between adjacent phase
windings. The equations of the standing mmf waves for each phase look like
Eqs. 8-54, 8-57, and 8-58 except for the angles. There are m such equations,
and they can be added and the sum written in the form of Eq. 8-61 i.e., witha
bracket containing 2m terms arranged in m lines. The terms on the left side
again add up to zero, and the others are all equal, which leads to the result

F0,0)= ? F peatc sin (6 - wr) (8-68)

which is valid for two, three, or any other number of phases.
Having completed this section, the reader is now ready to study the principles
and operating characteristics of actual generators and motors.

8-9 EXAMPLES
Example 8-1 (Section 8-6)

A three-phase machine has nine slots per pole. A fractional-pitch winding (with
B/180° = 7/9) is distributed in three adjacent slots for one phase. Find the distri-
bution factor and the pitch factor for this winding.

Solution

The location of the coil sides is shown in Fig. E-8-1. One of the coils has its
sides in slot 1 and in slot 8. Since nine slots correspond to 180°, the angle be-
tween adjacent slots is

«=180°/9 =20°

The number of adjacent slots used for one phase is ¢ = 3. The distribution factor
is found from Eq. 8-31.

1 2 3 4 5 6 7 8 9 10 11 12 13
O O O O O O
O O O o O O
.
= B |
180°

Fig. E-8-1.
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_ sin(ca/2) sin (3 X 20°/2)
97 ¢sin(¢/2)  3sin (20°/2)

The pitch of the coil is 8 = () (180°) = 140°. The pitch factor is found from
Eq.8-38

=0.960

kp =sin B/2 =sin 70° = 0.940

Example 8-2 (Section 8-6)

For the winding in Example 8-1, find the distribution factor and the pitch factor
for the fifth harmonic.

Solution

For the harmonic of the order h, the angles & and f are replaced by ha and 4B,
respectively. Thus, in our example, the angle to be used in place of ais 5 X 20° =
100°, and that in place of Bis 5 X 140° =700°.

The distribution factor for the fifth harmonic is

_sin (3 X 100°/2)
9" 35in (100°/2)
The pitch factor for the fifth harmonic is
kps =sin (700°/2) =-0.174

Note that both factors are much smaller than for the fundamental.

=0.218

Example 8-3 (Section 8-5)

The machine in Fig. E-8-3 has a cylindrical rotor with radius of 0.11 m and length
(into the page) of 0.26 m. The distance across the air gap is 0.003 m. The reluc-

Fig. E-8-3.
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tance of the steel parts may be neglected. The stator coil, a - @', has 80 turns.
The rotor coil, b - ', has 200 turns. Assume the rotor mmf produces a sinu-
soidally distributed flux density in the air gap. The rotor turns clockwise at a
speed of 3600 rpm (ie., @ =377t). Let the rotor current, i;, be 15 amp (d-c)
with the polarity shown. Find the voltage function in the open-circuited stator
coil. Find the rms value of the voltage.

Solution

The mmf in the air gap has the rectangular wave shape of Fig. 8-6. The peak
mmf of the sinusoid for the fundamental component is

gpeak = (4/77) (Nc i/2)

The corresponding peak value of the flux density is found by using the magnetic
circuit properties of the air gap

u 47X 1077\ [4 200 X 15
Bpeak = (Eg) ¥ peak = (‘—0%;" e b 0.8 weber/m?

4ir _4(0.26)(0.11)

o= —PT Bpeak = 5 (0.8) = 0.0458 weber

The flux linkages of the stator coil are given by
AN =N,¢ cos a=80 X 0.0458 cos 377t = 3.66 cos 377t

The instantaneous value of voltage in winding a is

eqa =dN/dt =-1380 sin 377t

€ga =13805sin 377t v
The rms value of this voltage is

Erms =Emax/V2 =976 v
We could also find the rms value of voltage by using Eq. 8-24
E=444N,¢f=444X 80X 0.0458 X 60=976 v

Example 8-4 (Section 8-7)

A 60-Hz, six-pole, a-c motor has a voltage of 550 v (rms) generated in its arma-
ture winding. The winding has 52 effective turns. When this motor develops
15 kw of power, the amplitude of the sinusoidal field mmf is 460 At. (a) Find
the value of the resultant air-gap flux per pole. (b) Find the angle between the
flux wave and the mmf wave.
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Solution
(a) Use Eq. 8-24 to find the flux per pole
¢ =E[/(444 N_f) =550/(4.44 X 52 X 60) =0.0397 weber
(b) Use Eq. 8-17 to find the mechanical speed
Wmech = (2/P) wy = (2/6)(2 7 60) = 125.7 rad/sec
Find the mechanical torque from power and speed
T =Plwpyeen = 15,000/125.7 =119 nm

Use Eq. 8-50 to observe that
Jpeak = F peak =460 amp/rad

Use Eq. 8-49 to find the torque angle
sin é = T/( p ¢Jpeak> 119/( X 6% X 0.0397 X 460) 046

8 =sin"! (0.46) =27.4°

As this machine is a motor, Fig. 8-18 could represent these conditions provided
the waves are moving toward the left. The rotor mmf lags by 27 .4 electrical de-
grees behind the resultant mmf.

Example 8-5 (Section 8-8)

Figure E-8-5 shows a two-pole, three-phase machine with a cylindrical rotor.
The labeled current directions indicate the directions for positive values of cur-
rent. The current functions are: i, =1, cos wt, i, =1, cos (wt - 120°), i, =
I, cos (wt - 240°). Find the magnitude and the location of the resultant mmf
for wt =0 and for wt =n/6.

Solution

As the mmf produced by each winding is a sinusoidal space function, an inter-
pretation based on phasor arithmetic can be used. Draw lines for the axes of the
three windings. When a current is positive, the corresponding phase mmf is ori-
ented in the axis of that phase. Construct three vectors on each axis respec-
tively. Find the three currents and mmfs for wt =0

i;(0)=1,, cos (0)=+1, Fo = +Fpear
ip(0) =1, cos (-120°)=-3 I, Fp =-4 Fpeax
i,(0)=1, cos (-240%)=-1 1, F.=-1F en
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Axis ¢

Axis ¢

F,=0866 F,

(b) ©)
Fig. E-8-5.

Draw ¥,, F,, §. on the respective axes. See Fig. E-8-5b. Also refer to Fig.
8-19b. This shows the magnitude is (-;—) ¥, and the peak is located at axis a.

Next, for wt =x/6, proceed in similar manner. Find the three currents and
mmfs

i,(n/6) =1, cos (30°) =+0.866 I,,, F,=+0.866F,
in(n/6) = I, cos (30° - 120°)=0 F,=0
i(n/6) =1, cos (30° - 240°)=- 0.8661,, F.=-0.866F,
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Draw F,, 5, F. on the respective axes. See Fig. E-8-5c. Also see Fig. 8-19c.
This shows the magnitude is (3) ¥ p and the peak is displaced by 30° from axis
a toward axis b. This direction of movement is in agreement with the phase
sequence,a - b - ¢.

Example 8-6 {Section 8-8)

The machine in Fig. E-8-5a has an mmf in the air gap given by F(8, ¢) = (%) Fp
cos (0 - wt - 40°). Find the symmetrical three-phase currents that could pro-
duce this wave. Use I,,, in your answer.

Solution

Since (8 - wt) appears in the equation, we know the wave rotates clockwise and
the phase sequence is a- b - c. At ¢ =0, the peak of the wave is located at 6 =
40°. The peak of the wave is at axis a for wt =-40°. This is the instant of time
that current i, has its positive maximum. We can write it as

i,(t) =1, cos (wt +40°)

The peak of the wave is at axis b for wt =+80°. This is the instant of time that
current i has its positive maximum. We can write it as

ip(t) =1, cos (wt - 80°)

The peak of the wave is at axis ¢ for wz =+200°. This is the instant of time that
current i, has its positive maximum. We can write it as

i,(t) =1, cos (wt - 200°)

8-10 PROBLEMS

8-1. A three-phase machine has twelve slots per pole. One phase of a fractional
pitch winding (with $/180° = 11/12) is distributed in four adjacent slots.
Find the distribution factor and the pitch factor for (a) the fundamental
component, (b) the fifth harmonic, and (c) the seventh harmonic.

8-2. A three-phase machine has fifteen slots per pole. One phase of a frac-
tional pitch winding (with $/180° = 13/15) is distributed in five adjacent
slots. Find the distribution factor and the pitch factor for (a) the funda-
mental component, (b) the fifth harmonic, and (c) the seventh harmonic.

8-3. A cylindrical rotor machine in Fig. E-8-3 has a radius of 0.17 m and length
(into the page) of 0.37 m. The distance across the air gap is 0.0032 m.
The reluctance of the steel parts may be neglected. The stator coil,a - &',
has 47 turns. The rotor coil, b - b', has 210 turns. Assume the rotor mmf
produces a sinusoidally distributed flux density in the air gap. The rotor
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turns clockwise at a speed of 3000 rpm (.., @ = 314¢). The rotor current
isi, =+16 amp (d-c). Find the voltage function in the stator coil (v, = 7).
The three-phase generator in Fig. P-8-4 has flux per pole of 0.08 weber.
Each stator coil has six turns. The rotor is driven clockwise at a speed of
3600 rpm. Choose zero time as the instant when the north pole is at con-
ductor a, as shown. (a) Find the frequency in Hertz. (b) Find the voltage
function of each winding. (c) Find the phase sequence. (d) The three
stator windings are connected in wye, with a4, b, and c tied together. Find
all line-to-line voltage functions.

120°
Fig. P-8-4.

A 50-Hz, eight-pole, a-c motor has a voltage of 760 v (rms) generated in
its armature winding. The winding has 56 effective turns. When this
motor develops 32 kw of power, the angle between the sinusoidal flux
wave and the sinusoidal mmf wave is 33 electrical degrees. (a) Find the
value of the resultant air gap flux per pole. (b) Find the amplitude of the
mmf wave.

Solve Example 8-5, for wt =n/2.

For the machine in Fig. E-8-5a, let the currents be: i, =1I,,, cos (wt), i =
I,, cos (wt - 120°), and i, =1I,,, cos (wt - 240°). Find the resultant mmf
as a function of 9 and ¢.

The machine in Fig. E-8-5a has an mmf in the air gap given by: $(0,¢) =
(%) Fp sin (0 - wt + 60°). Find the symmetrical three-phase currents that
could produce this wave. Use I,,, in your answer.
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Axis a

Fig. P-8-9.

The machine in Fig. P-89 has two identical stator coils located 90° apart.
The currents are i, = I,,, cos (wt) and i, =1,,, cos (wt - 90°). Find the re-
sultant mmf as a function of 6 and z. Use ¥, as the maximum peak mmf
of one phase.

A four-pole rotor has the following dimensions: axial length 0.6 m, radius
04 m. The flux distribution at the rotor surface has the space fundamen-
tal B(0) = 1.25 sin  weber/m?, where the angle 6 is expressed in electrical
units. The rotor rotates at 900 rpm and, for each pair of poles, it carries
a full-pitch coil of 50 turns. The two coils are connected in series. (a)
Find the total flux linkages of the rotor circuit as a function of the rotor
position (expressed by the electrical angle 6 in such a way that, at the
position 8 =0, each coil links the entire flux per pole). (b) From the re-
sult of part (a), find the voltage induced in the rotor circuit as a function
of the rotor position. (c) Find the velocity of each rotor conductor in
mfsec. (Assume the conductors are at the rotor surface.) (d) Find the
voltage induced in the rotor circuit by means of the Blu equation.
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Three-Phase Synchronous
Machines

9-1 FIELD EXCITATION

Among the various types of electromagnetic energy-converters to be studied in
this book, the synchronous machine is the one that embodies the idea of relative
motion between electric conductors and a magnetic field in its purest form. This
machine also has the distinction of being practically the only type of generator
for major power systems, in addition to being widely used as a motor.

The model device depicted in Fig. 7-13 may be used as a starting point. It
shows how an alternating voltage is induced in an armature rotating in a station-
ary magnetic field of constant magnitude. To produce such a field, there is the
field winding carrying a constant field current (the popular abbreviation d-c,
standing for direct current is applicable), which is, in general, supplied from a
separate auxiliary source.

The need for a constant current to provide the excitation of the magnetic cir-
cuit is characteristic of the synchronous machine, whether it is operating as a
generator or as a motor. The auxiliary source has the function of supplying the
magnetic field energy, but, once a steady state is reached in the field circuit, any
further expenditure of energy in this circuit merely covers the loss caused by its
resistance. There is no difficulty in designing the field winding in such a way
that its steady-state power consumption is only a small fraction of the power
rating of the machine itself.

The field circuit can be energized from any d-c source, such as a battery, a d-c
generator, or rectified a-c. For instance, many power plants have prime movers
that drive both their synchronous generators and their auxiliary d-c generators
(called exciters) on the same shaft. Another possibility, steadily gaining in
importance (particularly for the field supply of synchronous motors), is the use
of rectifiers converting the available a-c supply into d-c. Both d-c generators and
rectifiers lend themselves well to adjustment of their output, which is very
useful for control of operation of synchronous machines, as will be seen in later
chapters.

Another look at the model of Fig. 7-13 shows the need for some connection
between the rotating armature coil and the stationary outside circuit (containing

176
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Brushes

At

Fig. 9-1. Slip rings.

Rotor

the load in the case of a generator, the source in the case of a motor). Such a
sliding contact can be obtained by means of slip rings, a common enough con-
struction element of several types of rotating electric machines. Figure 9-1
is a sketch intended to describe the idea. The slip rings have blank metallic
cylindrical surfaces that are connected to the beginning and end of the rotor
winding (or windings); they are attached to the shaft so that they rotate with
the rotor (in fact, they may be considered to be part of the rotor). The brushes
are stationary pieces of conducting material (either metal or carbon), pressed
against the slip rings by means of springs in order to ensure a good contact.
Inevitably, the contact is never perfect (a voltage drop on the order of magni-
tude of 1 v is attributed to the contact resistance), and there is also some power
lost due to the friction between each brush and its ring.

The need for an auxiliary source and slip rings is clearly a drawback of the
synchronous machine. Is there no way to avoid them? There is, but at a cost
that makes it worthwhile only for exceptional cases. The part of the magnetic
circuit that carries the field winding can be replaced by a permanent magnet.
But flux densities obtainable from electromagnets are much higher than from
permanent magnets. Thus, the presence of a field circuit raises the possible
rating of a machine of given size considerably.

Another possibility, again important only for special cases, has to be men-
tioned in this context. The synchronous machine is capable of operating as a
singly excited device, on the principle presented in Section 7-4. This subject will
be discussed, together with the effect of salient poles, in a later chapter.

9-2 STATOR AND ROTOR

Since it is the relative motion between armature and field that matters, the
functions of stator and rotor can be interchanged. If the design of a synchro-
nous machine were based on the model of Fig. 7-13, the armature winding
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would be on the rotor, and the field winding on the stator. In such a machine,
the magnetic field would be stationary.

Actually , synchronous machines are practically always built the other way: the
armature winding on the stator, the field winding on the rotor, the magnetic
field rotating. There are good reasons for this choice. It must be kept in mind
that the armature circuit is the main circuit, the one at whose terminals electric
power is delivered to the load or obtained from the source, the one in which the
voltage is induced; briefly, then, the one in which the power conversion takes
place. The field circuit, no matter how vitally important, remains an auxiliary
circuit, whose voltage is likely to be a small fraction of that of the armature
circuit.

It would be unnatural, against all good engineering judgment, to have the
conductors of the main circuit located on the rotor, where they would be sub-
ject to centrifugal forces and vibration, and where it would be harder to find
room for them and their insulation.

Another point to be considered is that of the slip rings. They are the connec-
tion between whichever winding is located on the rotor and its outside circuit.
If there must be such a sliding connection, it is preferable to have it in the aux-
iliary rather than in the main circuit. Also, whereas a three-phase armature on
the rotor would require at least three slip rings, the field winding on the rotor
needs only two. It is even possible to avoid the use of slip rings entirely: this
requires the use of an auxiliary a-c generator (exciter) with a rotating armature
and of a rotating set of rectifiers, all on the same shaft (see Section 11-10).

So the machine to be studied in this and the next few chapters has, in its usual
form, a rotor carrying a winding that is excited from some d-c source. Figure
9-2 shows an example of such a rotor, this one with two salient poles. In this
diagram, the poles are drawn somewhat more realistically than in previous
sketches (e.g., Fig. 8-11). The magnetic circuit is widened at the rotor poles, in
order to reduce the reluctance of the air gap. The pole shoes thereby obtained
are also useful in helping to keep the field winding (cross-hatched in the figure)
in its place.

When the rotor rotates, its mmf wave rotates with it, without changing its
shape. So there is a travelling rotor mmf wave whose space fundamental can be
described by the equation

¥.0,0=75, peak cos(0 - wr) -1

where the angle 0 is counted in the direction of rotation, with the origin assigned
to the location of the pole axis at the time ¢ = 0. The symbol « stands for the
angular velocity of the rotor. In the case of more than two poles, the equation
remains correct provided both the angle 8 and its rate of change w are expressed
in electrical units, so that the distance between adjacent pole axes is always
counted as 180°, or 7 radians.
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Fig. 9-2. Machine with salient-pole rotor.

When the stator conductors carry currents, they produce a stator mmf wave.
As the reader knows, currents in a single-phase armature winding produce a
standing mmf wave. But this can never lead to a constant steady-state torque. It
was shown in Section 8-7 that such a torque requires a constant space angle be-
tween the flux distribution and the mmf wave of either the stator or the rotor.
In other words, it requires that the two component mmf waves be stationary
with respect to each other and thereby to the resultant mmf wave and to the
flux distribution. So it is only the rotating mmf wave of polyphase armature
currents that interacts with the rotor mmf wave to produce a constant torque.

It is true that single-phase synchronous machines have their place in the world
of power-converting devices. They have no constant torque, no uniform flow of
power. Their torques are pulsating, and they work because these torques can
have nonzero average values. Their analysis is more difficult than that of poly-
phase machines, and will be left to a much later chapter. This and the following
chapters will be devoted to the study of three-phase machines (other numbers of
phases being much less important and no different in the methods of treatment).

The picture in our minds’ eyes should be, therefore, a picture of two rotating
mmf waves (stator and rotor) that combine to form a resultant mmf wave. This
is the one that produces the rotating flux whose value may be substituted into
the voltage equation, Eq. 8-40, or the torque equation, Eq. 8-49.

The magnitude of the flux produced by a given mmf depends entirely on the
reluctance of the magnetic circuit. To produce a constant flux, the resultant
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mmf wave must, therefore, always encounter the same reluctance. This elimi-
nates any thoughts about possible salient poles on the stator: the stator must be
cylindrical.

For the rotor, on the other hand, there is a choice: it may either be cylindrical
or have salient poles, because the rotating field is, in the steady state, motionless
relative to the rotor. Basically, the salient-pole rotor is the preferred design
because it contributes a reluctance term to the total torque (see Eq. 7-38 and
Section 7-8), and also because salient poles are helpful for the dissipation of heat
by convection. The only reason for using cylindrical rotors arises when the
centrifugal forces would be too strong for salient poles. That is the case with
large, high-speed machines; practically, it means the case of generators driven by
steam turbines.

The fact that the steady-state flux is moving relative to the stator but not
relative to the rotor has a bearing on the choice of the core material. The stator
must be made of laminations in order to reduce the eddy current loss (see Sec-
tion 4-4). But the rotor may be made of solid ferromagnetic material, which is
much less expensive than laminations. Only the portion of the rotor core closest
to the air gap is frequently made of laminations, because of the harmonics of
the air gap flux distribution, which are due mainly to the slots and teeth of the
stator.

9-3 SYNCHRONOUS SPEED

The most characteristic property of the synchronous machine, the one to which
it owes its name, is the rigid relationship between the rotating speed ¢f the
machine and the frequency of the voltages and currents in the armature.

Figure 9-3 is a developed view of a three-phase stator, similar to that of Fig.
8-19a except that the single coils are replaced by distributed windings, occupying
the indicated spaces. The diagram covers 360 electrical degrees, or the fraction
2/p of the stator circumference.

To induce voltages of the phase sequence a - b - ¢ in these windings, the flux
must travel from left to right, so that the voltage induced in phase b lags that
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Fig. 9-3. Three-phase armature.
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induced in phase @ by 120°, etc. The time it takes the flux to travel 360 electri-
cal degrees equals one period of induced voltage. The same relation exists be-
tween the stator currents and the direction ana speed of their mmf wave. As
the reader remembers from Section 8-8, balanced currents of phase sequence
a - b - c in a stator winding arranged like that of Fig. 9-3 produce an mmf wave
traveling from left to right, and of such a speed that it covers 360 electrical
degrees during one current period.

In other words, the flux distribution and the stator mmf both travel in the
same direction and at the same speed, and so, consequently, does the resultant
mmf wave and the rotor mmf wave. In terms of the frequency f (in Hertz), this
speed, known as the synchronous speed, is

wy = 2nfelectrical radians per second 9-2)

or
2 4 . .
Wy = ;21rf = ;nf mechanical radians per second (9-3)
or, using the conventional unit of revolutions per minute,
ns=——2ﬂf=Trpm 9-4)

Since this is the speed of the rotor mmf, it is also the speed of the rotor itself.
Synchronous machines (in the steady state) must run at synchronous speed, in
contrast to induction machines (to be studied in later chapters), which operate
at other speeds (and, therefore, are sometimes called asynchronous machines).

The term synchronous speed is meaningful only in relation to the frequency
of the armature voltages and currents. For the frequency of 60 Hz used in the
power systems of the US, Eq. 9-4 leads to the following statements:

A two-pole synchronous machine runs at 3600 rpm.
A four-pole synchronous machine runs at 1800 rpm.
A six-pole synchronous machine runs at 1200 rpm, etc.

So the number of poles must be chosen in accordance with the desired speed.
Essentially, electric motors and generators are the less expensive the faster they
run. It could be asked why, then, any synchronous machines should be built with
more than two poles. The answer lies in the other machine that is attached to
the same shaft. For a generator, this is the prime mover; for a motor, it is the
load. It might be suggested that these other machines could run on their own
shafts, driving the generator or being driven by the motor over a set of gears (or
other drives). But in that case, the cost of these gears, their power losses and
their maintenance problems would usually outweight the advantages of such



182 ELECTRIC POWER SYSTEM COMPONENTS

a scheme. Generators, in particular, are practically always mounted on the
same shaft with their prime movers. Typically, steam turbines are fast-running
machines for which 3600 and 1800 rpm are the only suitable speeds for 60 Hz.
Various types of waterwheels, on the other hand, require lower speeds and,
therefore, generators with larger numbers of poles.

9-4 THE ADDITION OF MMF WAVES

The key to the study of synchronous machines, to understand how they respond
to different operating conditions, lies in the combination of the two component
mmf waves. The following analysis is based on the assumption of sinusoidal
wave shapes, which means only that it is restricted to the space fundamentals
of the mmf waves. A study of the effects of space harmonics would be based on
the same principles and techniques.

We are considering, then, two sinusoidal waves traveling in the same direction
and at the same speed, but with different peak values and space angles. They
can be described by the equations

F,00,6)=A4cos(0 -0, - wt) (9-3)
for the armature (stator) mmf wave, and
Fr0,6)=Fcos(0 - 0y- i) (9-6)

for the field (rotor) mmf wave. The new symbols A and F represent the peak
values of the two waves, and 8, and 0 are the locations of these peaks at the
instant £ =0.

There are several ways to show that the resultant mmf wave has the form

Fres(0, 1) =R 08 (0 - Oy - W) 9-7)

and to find the values of R and 0, the peak value of the resultant mmf wave
and its initial position. Mathematically, the most elegant method begins with
a substitution according to Euler’s equation: cosa =Re e/®. A different pro-
cedure is chosen here, because it makes use of the representation of sinusoidal
time functions by phasors, a technique well known to the reader (and recapitu-
lated in Section 4-1). In addition, this method makes it possible to use phasors
representing mmf waves in conjunction with phasors representing voltages and
currents.

Mmf waves are functions of both time and space, whereas phasors can repre-
sent only functions of time. Therefore, recourse is taken once again to the idea
of a stationary observer, previously introduced in Section 8-8. For such an
observer, stationed at § = %, a rotating wave appears as a sinusoidal time func-
tion. For instance, the armature mmf wave, as registered by this observer, is

F,0%,1)=A cos (6% - 0, - wt)=A cos[wt + (@, - 0%)] (9-8)
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which can be represented by the phasor

A=4/6,-0* (9-9)
Results obtained this way are not restricted by the chosen location 8*. If the
observer is placed somewhere else, the magnitude of the phasor A remains the
same, and its phase angle changes by the same amount as the location of the
observer. The choice of 6* is merely a matter of convenience.

Figure 9-4a shows the arrangement of a three-phase armature winding on the
stator, repeated from Fig. 9-3. In addition, a few conductors of phase g are
drawn, with indications of the assumed positive direction. Phase @ is chosen
(arbitrarily) to be the reference phase, meaning that, whenever a phase current
or a phase voltage is mentioned, it is understood to be the one in phase a.

For this armature, Fig. 9-4b gives a snapshot of the armature mmf wave at that
instant at which the phase current (i;) has its positive maximum value. Thus the
peak of ¥, appears in the axis of phase #, and its being positive means that the
corresponding lines of flux are pointing upward (referring to Fig. 9-4a), or out

@

EEer T 1888 T |

/-\ | 9 (b)

8 (c)

A
SN

Fig. 9-4. Location of stationary observer: (a) positive direction for phase a; (b) armature
mmf wave at instant when iz = /;max: () flux distribution at instant when e = Epyay .
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of the stator. Now, if the stationary observer is placed in the axis of phase 4, as
indicated in Fig. 9-4b, then, at the instant of this figure, the observer registers
the positive maximum value of A. In other words, due to this choice of observer
location, the phasors representing the armature mmf and the armature current
are in phase, in addition to their magnitudes being proportional to each other.

To establish a further phase relation, Fig. 9-4c shows the flux distribution at
the instant when the induced voltage in phase a has its positive maximum value.
The reader should check the polarity of the flux, using the right-hand rule given
in the footnote of Section 7-1. It must be remembered, however, that the direc-
tion of the thumb represents the motion of the conductors relative to the field,
which, in this case, is to the left because the conductors are stationary and the
field is traveling to the right. So the observer at his location #* must have regis-
tered a positive maximum value of flux density a quarter-period before the
instant of the diagram. In other words, using phasors in accordance with this
observer location, the flux distribution leads the induced voltage by 90°. Again,
the magnitudes of these two quantities are directly proportional to each other.
(Eq. 8-40 states that the voltage is proportional to the flux, which, in turn, by
Eq. 8-12 is proportional to the peak value of the flux distribution.)

Next comes the relation between the flux distribution and the resultant mmf
wave. It was already mentioned in Section 9-2 that this relation depends only
on the reluctance of the magnetic circuit. But while this reluctance is constant
in the steady state, it may change from one operating condition to another, in
case the rotor is built with salient poles. This presents a complication to the
analysis. The present study will, therefore, be limited to machines with cylindri-
cal rotors, leaving the effects of salient poles to a later chapter. The idea is that
results obtained for cylindrical-rotor machines are valid qualitatively for all
synchronous machines, even if they are not accurate quantitatively for machines
with salient-pole rotors. Thus the flux distribution and the resultant mmf wave
will now be considered to be in phase with each other. Their relation is de-
scribed by a saturation curve Bpeqy versus R.

Finally, the induced voltage mentioned above differs from the terminal voltage
of the armature in the same way in which the corresponding quantities of a
transformer differ from each other. The armature winding is not ideal and, thus,
has the properties of resistance and leakage inductance (leakage referring to all
those lines of flux that link stator conductors but do not cross the air gap). So
each phase of the armature winding can be represented by the equivalent circuit
of Fig. 9-5. For the sinusoidal steady state, the phasor equation

E=V+R,I, +jX;I, (9-10)

expresses Kirchhoff’s voltage law for the circuit of Fig. 9-5. Of the symbols used
in this equation and in the diagram, R, stands for armature resistance, X; for
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Fig. 9-5. Armature circuit per phase.

leakage reactance, and /, for armature current. (The reader may also, if he pre-
fers, interpret the subscript « as indicating the reference phase a).

The various statements and relations developed in this section will all be used
and combined in the following one.

9-5 OPERATING CONDITIONS

The reader is referred to Fig. 7-3b, in which generator and motor operation are
illustrated for a device whose induced voltage has a given direction. The device
acts as a generator when the current flows through it in the direction of the
voltage, i.e., from the lower to the higher potential, and as a motor if the current
direction is reversed.

When voltage and current are sinusoidal, their relative directions may change
during every cycle. What counts is the condition that prevails during the greater
part of every period. The equation for average power in the sinusoidal steady
state, P = VI cos 0, applied to the circuit of Fig. 9-5, makes it clear that the
machine delivers power to a load (acts as a generator) when the angle 8, the
phase difference between V and /, is in the first or fourth quadrant, making the
power factor cos @ positive.* With such an angle, voltage and current are in the
same direction for the greater part of every period, which explains why the aver-
age power is positive. It also follows that the machine is receiving electric power
at the terminals when the angle between ¥ and 7 (as defined in Fig. 9-5) is in the
second or third quadrant.

The synchronous machine can operate either as a motor or as a generator. Its
operating condition is completely determined by the values of the three quanti-
ties ¥, 1, and 8. For every given operating condition, the relations obtained in
the previous section can be combined to give a picture of what is going on.

The procedure begins with the choice of V (arbitrary but plausible) as the axis
of reference, whereby the two phasors V and I are defined. They are substituted

*It must be mentioned that the Greek letter & was used since Section 7-6 as the symbol
for a space angle. From here on, however, it reverts to its previous meaning, familiar from
circuit analysis.
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into Eq. 9-10, resulting in the phasor E. The phasor A representing the armature
mmf wave is in phase with the armature current phasor I, and proportional to
it. The factor of proportionality can be either calculated from design data or
obtained from tests. The same can be said about the saturation curve E versus R
(identical with the curve Bpegy versus R except for a change of the ordinate
scale). This curve permits finding the phasor R (representing the resultant mmf
wave) that leads the voltage phasor E by 90°, and thereby the phasor F repre-
senting the field mmf wave, since

F=R-A (©-11)

The significance of this result lies in the fact that F is the field excitation that
is required if the machine is to operate as specified (i.e., with the given values
of ¥, I, and §). The magnitude F'is proportional to the field current I, and the
angle § between F and R is the familiar torque angle appearing in Eq. 8-49.

Figures 9-6 and 9-7 illustrate the procedure, without any numerical values.
They represent two arbitrary examples, one for generator and the other for
motor operation (determined by the quadrant of the current phasor I, since the
voltage phasor V is in the axis of reference). In both diagrams, the magnitudes
R, I, and X;I, are somewhat exaggerated, i.e., drawn larger in relation to ¥ than
they would be in most practical cases. The numerical calculations in Examples
9-1 and 9-2 are based on operating conditions similar to those described in the
two diagrams and on realistic values.

The reader can see, both in the figures and in the calculated examples, that the
torque angle 6 must be reversed if the machine is to change between motor and
generator operation. This is only natural since the electromagnetic torque in
a motor is in the direction of rotation, whereas in a generator, it opposes the

Fig. 9-6. Generator operation.
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Fig. 9-7. Motor operation.

motion. It is also interesting to study how the magnitude relations among the
mmf waves change with changing operating conditions. This will be left for later
sections, however, after a much simpler, even though less rigorous, method of
analysis has been developed.

9-6 LINEAR ANALYSIS

If fluxes were proportional to the mmfs that produce them: in other words, if
magnetic circuits were linear, their study could in many cases be considerably
simplified by the use of superposition. In particular, this can be said about
synchronous machines. The contrast between linear and nonlinear analysis can
be illustrated by a graphic tabulation of the pertinent relations.

In Fig. 9-8, the arrows refer to the relations established in Section 9-4 and
used in Section 9-5. The heart of the procedure lies in the addition of the two
component mmf waves, each of which is proportional to its current or currents.
At the end of the sequence, there is the induced voltage that is proportional
to the flux and lags it by 90°. The nonlinear relation is the one between the
resultant mmf wave R and the flux; it is the familiar saturation curve.

Figure 9-9 shows how the procedure can be changed in the linear case, when
the saturation curve is a straight line through the origin. In that case, each of the
two mmf waves 4 and F is thought of as producing its own flux, and each such

Current Mmf Flux Voltage

I
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Fig. 9-8. Nonlinear relation.
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Fig. 9-9. Superposition.

flux its own voltage. All the arrows from left to right, from currents to voltages,
indicate proportional relations, and each component voltage lags its mmf wave
by 90°. Specifically, a phasor relation can be established between the voltage
E, and the armature current (in the reference phase):

Ea = _anla (9'12)

because the symbol X (reactance) stands for the ratio of a voltage over a current
when the two are 90° out of phase. What’s more, the use of this symbol is not
only formally justified but also physically meaningful because E is a voltage of
self-induction, a voltage induced in each phase of the armature winding due to
the flux produced by the currents in that same winding.

The effect of the flux produced by armature currents is generally called arma-
ture reaction. Accordingly, the reactance X, is given the awkward name of
armature reaction reactance, a name that surely could not have survived long
in engineering practice if it were not for the fact that this reactance by itself
does not appear in the final results.

Now the phasors representing the two component voltages are added, in
accordance with the principle of superposition (the sum of the linear effects of
several causes equals the effect of the sum of the causes):

E =E; - jX,I, (9-13)

The purpose of the whole procedure becomes clearer when Eq. 9-10 is substi-
tuted into Eq. 9-13, whereby the terminal voltage is brought into the picture,
for instance in the form

E; =V + Ry, +iX/1, +X,1, (9-14)

This equation suggests that there are two reactances in series. This is illus-
trated by Fig. 9-10, an equivalent circuit for one phase of the armature winding
from which Egs. 9-10, 9-12, and 9-13 can be read. In contrast to Fig. 9-5, this
diagram displays a new source Ey, called the excitation voltage, since it is the
voltage that would be induced in the absence of armature currents by the field
current alone.
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Fig. 9-10. Equivalent circuit.

As to the two reactances, it is instructive to compare them. The leakage reac-
tance is to be considered as an inevitable imperfection of the armature winding,
just like the leakage reactances of transformer windings. It is also (at least, as a
close approximation) a linear circuit element because the path of leakage flux is
largely through air. Armature reaction, on the other hand, is not an imperfec-
tion, but rather an essential feature of the operation of synchronous machines.
The flux in the air gap is produced by the combined action of the stator and
rotor currents, just as the flux in a transformer is produced by the combined
action of the primary and secondary currents. But the representation of arma-
ture reaction by a reactance is an artifice made possible only by ignoring the
nonlinearity of the magnetic circuit. This casts a shadow of uncertainty over
the value to be given to this reactance. Still, whatever numerical value may be
chosen for it, it is sure to be much larger than the leakage reactance, and the two
reactances can be added in any case, as Eq. 9-14 and Fig. 9-10 indicate. Thus

X+ X, =X, (9-15)

which is called the synchronous reactance, because it is the reactance that
appears in the most frequently used method of analysis of the synchronous
machine. (This eliminates the armature reaction reactance from further consid-
eration, as promised.) With the introduction of the synchronous reactance,
Eq. 9-14 is reduced to

E;=V+R,l, +jX, (9-16)

and the equivalent circuit to that of Fig. 9-11.

A striking feature of this new equivalent circuit is that the induced voltage £
has been obliterated. What is left is a description of the synchronous machine
by an ideal source £ (dependent on the field current Iy, but independent of any
voltage or current in the armature current, which was not true of the source £ in
Fig. 9.5) and a complex impedance R, + jXj; in other words, a Thévenin type
of equivalent circuit.
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Fig. 9-11. Synchronous reactance.

It must not be forgotten that this simple representation was made possible by
a linear approximation. No matter how the value of X is chosen, it will never
fit all operating conditions with more than some limited accuracy. For this
reason, a good case can be made for disregarding the armature resistance. This
means a considerable gain of simplicity, and a comparatively slight further loss
of accuracy, since this resistance (an imperfection responsible for power losses)
must be much smaller than the synchronous reactance. Most of the rest of this
chapter and of the next two chapters will be based on the simplified equivalent
circuit of Fig. 9-12, and on the corresponding equation

E =V +jX,], (9-17)

Results thus obtained will be qualitatively significant even though quantitatively
suspect. Only when power losses and efficiency of the synchronous machine are
to be studied, must the armature resistance be considered.

9-7 OPEN- AND SHORT-CIRCUIT CHARACTERISTICS

Two methods to analyze the operation of the synchronous machine have now
been developed. The one based on the addition of mmf waves is more rigorous
but also more complicated. The introduction of the synchronous reactance
sacrifices accuracy, but makes everything much easier (which makes it practi-
cally indispensable for the study of entire power systems for which synchronous
machines are only components). Whichever of the two methods is used, some
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Fig. 9-12. Simplified equivalent circuit.
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properties of the specific machine to be studied must be known in numerical
form. How are they obtained?

Since machines are built for specific purposes, designers must be able to deter-
mine their numerical properties, to anticipate how they will operate. For that
purpose, designers are using a combination of techniques, many of them based
on approximations, trial-and-error computations, and previous experience. When
a machine is built, the final proof that it meets its specifications must be by
testing. Thus, it is necessary, for the manufacturer as well as for the purchaser
of the machine, to determine the numerical properties of the machine experi-
mentally. The situation is the same as that encountered in the study of trans-
formers (Section 5-9).

There are tests and methods to evaluate them for the purpose of obtaining the
numerical data needed for the analysis based on the addition of mmf waves. For
those, however, the reader will be referred to some of the older texts.* In this
book, we shall concentrate on tests that serve to find numerical values of syn-
chronous reactance.

The basic idea is suggested by a look at the simple (Thévenin equivalent) cir-
cuit of Fig. 9-12. Clearly, the synchronous reactance can be found as the ratio
of open-circuit voltage over short-circuit current

Yoe

X.=
s Isc

(9-18)
where both V. and I, must be phase quantities (not line quantities). But there
is a complication: both V. and /. are dependent on the field excitation, and so
is their ratio.

In an open-circuit test, the machine is driven at its intended synchronous speed
(regardless of whether it is meant to be used as a generator or as a motor), sup-
plied with an adjustable field current from an auxiliary source, but left open-
circuited at the armature terminals. Under these circumstances, there is no
armature current, therefore no stator mmf, and the flux is entirely due to the
field current. Also, there is no voltage drop across the armature resistance and
the leakage reactance. In other words, Ef = E = V., which can be measured at
the armature terminals.

By adjusting the field current to several different values, points of a saturation
curve are obtained because its abscissa, the resultant mmf wave, equals the rotor
mmf wave (in the absence of a stator current), which is proportional to the field
current, while the ordinate, the flux, is proportional to the induced voltage.
This form of saturation curve, V. versus Iy, is called the open-circuit character-

*For instance, M. Liwschitz-Garik and C. Whipple, Electric Machinery, D. Van Nostrand
Co., 1946, or A. F. Puchstein, T. C. Lloyd, and A. G. Conrad, Alternating Current Machines,
third edition, John Wiley & Sons, 1954.
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Voe

Vrated

Fig. 9-13. Open-circuit characteristic.

istic (OCC) of the machine. Figure 9-13 depicts the typical shape of such a
curve, and shows how rated voltage can be expected to be somewhat above the
knee, in the interest of proper utilization of the core material.

A short-circuit test is conducted in a similar fashion. Again, the machine is
driven at its synchronous speed and excited from an auxiliary source. The field
current is varied but, this time, the armature windings are short-circuited, and
the currents at their terminals are measured.

The short-circuit characteristic (SCC) thus obtained (.., the curve Iy versus Ir)
turns out to be a straight line over any reasonable range of values. In other
words, the magnetic circuit is not saturated in this test. It is not difficult to show
why this is so, by pointing at Eq. 9-10, with V set equal to zero. In this equa-
tion, the voltage drops across the imperfections R, and X; cannot be more than
small fractions of the rated voltage, even if the armature current is raised far
beyond its rated value. Thus, in the short-circuit test, the induced voltage £ is
only a small fraction of rated value whereas, in any normal operation, £ and V
are at the same order of magnitude. Consequently, in the short-circuit test, the
flux is much smaller than under operating conditions, and thus it is unsaturated.

In Fig. 9-14, both the open- and the short-circuit characteristic are drawn in
the same system of axes, but there are two independent ordinate scales. Accord-
ing to Eq. 9-18, the synchronous reactance is the ratio of the ordinates of these
two curves. The diagram serves to dramatize the uncertainty about the numeri-
cal value to be attributed to this “constant.” If it is taken at a value of field
current at which the magnetic circuit is not saturated in the open-circuit test,
it is called the unsaturated synchronous reactance. For instance

ca

Xopnsat = 51 (9-19)
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Fig. 9-14. Unsaturated and saturated synchronous reactance.

It is clearly greater than a similar ratio taken at a value of field current at which
the open-circuit characteristic is no longer a straight line. For instance,
fd
X5, =— 9-20
Sat o ( )
Experience has shown that a useful value of this saturated synchronous reac-
tance, one that can be substituted into Eq. 9-16 or Eq. 9-17 leading to fairly
good approximations, is obtained by choosing point f as the point where the
ordinate of the open-circuit characteristic equals rated voltage.

9-8 NORMALIZED QUANTITIES

For numerical calculations, the use of normalized (per unit) values, first en-
countered in Section 5-9 in the study of power transformers, can be meaningful
and advantageous for synchronous machines also. As the reader recalls, a quan-
tity is normalized by being divided by a base quantity. Rated values are useful
choices for base quantities, as they were for transformers.

For three-phase machines, there is the additional benefit that the distinction
between phase and line quantities can be made irrelevant. This result is obtained
by the choice of different bases for phase and line quantities. For a wye connec-
tion, where Vy, = /3 Vp, the bases are

Vpvase = Vprated (9-21)
and

VL base = VL rated = \/§VPrated (9-22)

with the pleasing result that normalized phase and line voltages equal each other.
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Similarly, in a balanced delta connection, where I}, = V3Ip*
Ipbase = Iprated (9-23)
and

IL base = IL rated = \/§IP rated (9'24)

Resistances, reactances, and impedances (as well as their reciprocals) can only
appear in “per phase” equations. Thus, the impedance base must be

VP rated
Zbase =

(9-25)
IP rated

Finally, the base for power, reactive power, and apparent power is the apparent
power at the armature terminals (generator output, or motor input) under rated
conditions:

Pyvase = 3Vprated Iprated = \/§VL rated 1L rated (9-26)

Consequently, the factors 3 or v/3 never appear in equations thus normalized.
For instance, the output power of a generator operating at rated conditions
equals the power factor. An example will illustrate the whole idea.

99 EXAMPLES
Example 9-1 (Section 9-5)

A cylindrical-rotor, three-phase, two-pole, 3600-rpm synchronous machine has a
rating as a generator of 3000 kva, 6600 v, and 60 Hz. Each phase has resistance
and leakage reactance of 0.06 ) and 0.72 , respectively. The stator mmf
produced by 262 amp is 12,400 At/pole. Generated voltage per phase, for dif-
ferent excitations is given by:

E 3000 3620 3720 3810 3900 3980 4200 v
R 10,000 15,000 16,000 17,000 18,000 19,000 24,000 At/pole

This machine is operated as a generator with rated terminal voltage and rated
load current with power factor of 0.9 lagging. Find the generated voltage and
the excitation required in the rotor field.

*All current symbols in this section refer to armature currents. The subscript 2 has been
omitted as unnecessary in this context.
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Solution

Rated voltage is 6600/+/3 =3810v per phase. Rated current is 3,000,000/
(3 X 3810) = 262 amp. Use the equivalent circuit of Fig. 9-5. Use the terminal
voltage as reference.

V=3810/0°=3810+;0v

I, =262 /[-25.8° amp
R,I, =(0.06 /0°)(262 [-25.8°)=15.7 [-25.8°=14.1-j6.8 v
7X;1, = (0.72 /90°)(262 [-25.8°) = 189 [64.2° =82.4+j 170 v

Use Eq. 9-10 to find E
E=V+R,I, +jX;I, = 3906 + j 163 = 3909 /2.39° v
From the saturation curve, find R
R = 18,100 /90° +2.39° = 18,100 /92.4° = -755 +j 18,080 At/pole
A =12,400/-25.8° =11,160 - j 5410 At/pole
Use Eq.9-11 to find F
F=R-A=-11915+;23,490= 26,340 /117° At/pole

The quantities in this problem are illustrated by Fig. 9-6. As this is a generator,
notice that F leads R by 24.6°. This method of problem solving is called the
General Method.

Example 9-2 (Section 9-5)

The machine of Example 9-1 is operated as a synchronous motor with rated
terminal voltage and rated current. The field current is set to make the power
factor 0.9 lagging. Find the generated voltage and the excitation required in the
rotor field.

Solution

Use the equivalent circuit of Fig. 9-5. Recall that the current direction shown is
for generator action. Motor performance, with lagging power factor, will have
the current phasor located in the second quadrant.

I, =262 [154.2° amp
R,1, =(0.06 /0°)(262 [154.2°)=15.7 [154.2° =-14.1 +j 68 v
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iX;1, =(0.72 /90°)(262 /154.2°) = 189 [244.2° = -82.4 - j170v
V=3810/0°=3810+;0v
Use Eq.9-10 to find E
E=V+R,l, +jX;1,=3713-j163=3717 [-2.5°v

From the saturation curve, find R
R =15,970 /90° - 2.5° =15,970 /87.5° = 697 + j 15,950 At/pole
A =12,400 /154.2° = -11,160 + j 5400 At/pole
Use Eq.9-11 to find F
F=R-A=11,860+;10,550 = 15,870 /41.6° At/pole

The quantities in this problem are illustrated by Fig. 9-7. As this is a motor,
notice that F lags R by 45.9°. Also notice that the motor, with lagging current,
is underexcited, while the generator in Example 9-1 was overexcited.

Example 9-3 (Section 9-7)

The machine in Example 9-1 is operated in a short-circuit test with F' equal
to 17,000 At/pole. The short-circuit current is 337 amp. Find the saturated
synchronous reactance.

Solution

Use Fig. 9-14 and Eq. 9-20

Notice that the synchronous reactance is approximately 15 times as large as the
leakage reactance for this machine. Also notice that the short-circuit current is
larger than rated current for this machine. The ratio 337 amp/262 amp = 1.29
is called the short-circuit ratio.

Example 9-4 {Section 9-8)

For the machine in Examples 9-1 and 9-3, (a) Find the line voltage, current and
power in per-unit. (b) Find the voltages (per phase) in Example 9-1 in per-unit.
(c) Find the resistance and reactances in per-unit.
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Solution
(a) V1 base = 6600 v V7, = 6600 v
I}, pase = 262 amp I, =262 amp
P, base = 3000 kva PF.=09lag
Vi = Vi !Vi vase = 1 pU P=2700 kw
I, =Ip /Iy pase = 1 pu
P = PP, pqse =2700/3000 = 0.9 pu
(b) Vpbase =3810v
V= V[Vppase = 3810v/3810 v=1 pu
E = E[Vp pase = 3909 v/3810 v =1.026 pu
Rol;=Ry1;/Vpbase = 15.7 v/3810 v =0.004 pu
Xily = X114/ Vp base = 189 v/3810 v=0.05 pu
© Zyvase = Vprated/Iprated = 3810 v/262 amp = 14.5 Q

Ry = Ry/Zpaee = 0.06 ©/14.5 Q = 0.004 pu
X;= Xy Zpase = 0.72 ©/14.5 © = 0.05 pu
Xy = X/ Zpase = 11.3 /145 Q=078 pu

Compare R, and X; with R,I, and X;I, in part (b). Observe that 1/X g =
1/0.78 = 1.29 = short-circuit ratio. That is, the short-circuit ratio is the recip-
rocal of the saturated synchronous reactance expressed in per-unit.

9-10 PROBLEMS

9-1.

9-2.

The machine in Example 9-1 is operated as a generator with rated terminal
voltage and rated load current with power factor of 0.8 lagging. Find the
generated voltage and the excitation required in the rotor field.

The machine in Example 9-1 is operated as a synchronous motor with rated
terminal voltage and rated current. The field current is set to make the
power factor be 0.8 lagging. Find the generated voltage and the excitation
required in the rotor field.

. A 60-Hz, two-pole synchronous motor has its shaft directly coupled to the

shaft of a fourteen-pole a-c generator. Find the frequency of the voltage
produced in the generator.
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9-4.

9-5.

9-8.

9-9.

ELECTRIC POWER SYSTEM COMPONENTS

Energy is to be transferred from a 60-Hz system to a 50-Hz system through
a motor-generator set. Find the minimum number of poles that can be
used for the synchronous motor and for the a-c generator, respectively.
Find the shaft speed for this set.

A 50-kva, three-phase, Y-connected, 220-v (line to line), six-pole, 60-Hz,
synchronous machine has resistance and leakage reactance (per phase) of
0.03  and 0.087 2, respectively. No-load test data are:

OCC E(per phase) 116 124 130 135v
Ir 175 2.0 225 2S5amp
sce I, 121 138 155 173 amp

Find the saturated synchronous reactance.

. A 900-kva, 60-Hz, 1039 v (line to line), 500 amp, three-phase, Y-connected

synchronous machine has per-phase parameters of 0.02 €2 resistance and
0.08 £2 leakage reactance. The OCC is given by

832 Iy 5F
E= or Ip=
S5+ 832-F

where E is the no-load voltage per phase and /5 is the d-c field current. The
SCC is given by

Ia(SC) =50.2 If

where I;(sc) is the short-circuit armature current per phase and Iy is the d-c
field current. Find the saturated synchronous reactance.

. The machine in Problem 9-5 is operated with 7, = 104.8 amp. Find /,,

R,1,, and X;I, in per-unit. Also find R,, X}, and Xj in per-unit.

The machine in Problem 9-6 is operated with I, = 350 amp. Find I,, R, 1,,
and X;/, in per-unit. Also find R,, X, and X in per-unit.

A three-phase, Y-connected, cylindrical-rotor synchronous machine is
driven at rated speed. On the open-circuit characteristic, the rated voltage
point is given by 400 v per phase for 8 amp of field current. One point on
the short-circuit characteristic is given by an armature current of 360 amp
for 6 amp of field current. Find the saturated synchronous reactance for
this machine.
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Synchronous Motors

10-1 THE INFINITE BUS

If a synchronous machine is to operate as a motor, it must receive electric power
at its armature terminals. Since this study concentrates on three-phase machines,
we shall visualize three armature terminals connected to a three-phase power sys-
tem. This system, in turn, is energized by one or more generators whose func-
tion it is to supply the entire load, including “our” motor, with the electric
power it requires, at substantially constant values of voltage and frequency.

In the next chapter, when the operation of synchronous generators will be
studied, the reader will get a good look at the problems of how to deal with
changes of magnitude and frequency of the voltage at various points of the
power system. In studying motor operation, however, it is best to assume that
these problems are successfully solved, even to the extent that the input voltages
are purely sinusoidal, and of constant magnitude and frequency.

A frequently used term for such a supply is infinite bus. To a reader unfamiliar
with this expression, it should first be pointed out that bus is an abbreviation of
the Latin omnibus, which means for all (thus the familiar use of the same word
for a public transportation vehicle). In the professional idiom of the electric
power engineer, a bus (or, more elaborately, a bus bar) is a system of large con-
ductors by which, in a power plant or substation, all circuits carrying incoming
and outgoing power, including generators, transformers, transmission lines, etc,
are connected in parallel.

An actual bus is always finite in the sense that all currents entering and leaving
the bus must be finite, so that adding another generator or another load to those
already connected to the bus changes the total current, and thereby indirectly
the voltage (due to the voltage drop across the impedance of every generator
and/or transmission line supplying the bus). An infinite bus is one whose total
curent is so large that adding another generator or load does not make any dif-
ference. It is comparable to a lake or pond that is so large that taking some
buckets of water out of it or pouring them into it cannot change its level.

In terms of circuit analysis, an infinite bus is the equivalent of an ideal voltage
source connected directly to the armature terminals. The terminal voltage V'
thereby becomes the natural choice for the axis of reference. (It was already
so used in Figs. 9-6 and 9-7.)

199
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10-2 STEADY-STATE OPERATION

The following steady-state analysis of the synchronous motor is based on the
linear approximation introduced in Section 9-6, thus on the use of the syn-
chronous reactance concept. The armature resistance will be disregarded, to-
gether with the effects of saturation, of salient poles, and of the space harmonics
of the flux distribution. This leaves an armature circuit per-phase reduced to
that of Fig. 9-11. It is reproduced, with some modifications, in Fig. 10-1.

Some of the changes are of minor importance: assumed positive voltage polari-
ties are indicated by plus and minus signs instead of the arrows used previously,
and the terminals are drawn on the left-hand side, to suggest a power flow from
left to right. What is significant is the reversal of the current arrow, with respect
to the voltage. It requires that Eq. 9-17, representing Kirchhoff’s law, be
rewritten:

E;=V-jX, (10-1)

With the current arrow of Fig. 10-1, the motor may be more easily compared
to other circuits receiving electric power, like resistances or impedances. The
machine so represented operates as a motor if the phase angle between voltage
and current is in the first or fourth quadrant. In this case, the power factor
(the cosine of this phase angle) is positive, and so the electric input power of
the motor is positive. (By contrast, if the current arrow of Fig. 9-11 were used,
motor operation would be characterized by negative power at the armature
terminals.)

With the armature connected to an infinite bus, and the terminal voltage V
chosen as the axis of reference, the armature current phasor of a motor may be
anywhere in the first or fourth quadrant, between 90° and -90°. Just where it
lies within these limits, depends on the two independent variables of motor
operation: the mechanical load and the field excitation.

To illustrate these relations, Fig. 10-2 shows phasor diagrams representing
three possible cases: the armature current in phase with the terminal voltage
(6 = 0), leading it, and lagging it. The three diagrams are the graphic equivalent

1
——
=il
+ Xs +
v £y

Fig. 10-1. Current direction choice for motor operation.
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Fig. 10-2. Phasor diagrams: (a) current in phase with voltage; (b) current leading voltage, (c)
current lagging voltage.

of Eq. 10-1. They are drawn for the same amount of electric power since the
real component of I, has the same value in each case. Also, the reactive power
in the cases (b) and (c) is the same since the imaginary component of I, is the
same in these two cases.

The most striking difference between the three diagrams is that of the magni-
tudes of the excitation voltage Ey. The reader recalls that Eis the voltage that
would be induced in the armature by the flux due to the field current alone,i..,
in the absence of any armature current. Therefore, the magnitude of £ depends
entirely on that of the field current I. Since the whole concept of synchronous
reactance is based on an assumption of constant saturation, the relation between
these two variables must be assumed to be linear, with a suitably chosen factor
of proportionality (See the last paragraph in Section 9-7).

So it can be learned from the three diagrams of Fig. 10-2 that the phase angle
6, and thereby the power factor cos 8, depend on the field excitation. (In a
qualitative sense, this term field excitation can be understood to mean either E
or Iz, since increasing one of them also means increasing the other, and vice
versa.) For a load requiring a certain amount of power, the power factor can be
adjusted by varying the field excitation.
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Let it, for instance, be desired that the motor, while driving a given load, draw
current at unity power factor. A diagram like that of Fig. 10-2a, or the equiva-
lent analytical procedure, determines the field excitation required for that pur-
pose. This is known as the normal field excitation for that load. If the actual
field excitation is more than that, the motor is said to be overexcited, and it
must draw leading current in accordance with Fig. 10-2b. Similarly, the current
drawn by an underexcited motor must be lagging.

These statements can be made plausible by reference to well-known properties
of passive circuits. A lagging current is one that supplies an inductive circuit,
one that helps to store magnetic field energy. If an underexcited synchronous
motor is thought of as one whose field current is not large enough to store the
required field energy, then the armature current must be capable of making up
for that deficiency; thus, it must be lagging. Logically, an overexcited motor
needs the opposite kind of reactive current, i.e., a leading one.

It is often desirable to operate a synchronous motor with normal field excita-
tion, because at unity power factor the armature current has the smallest possible
magnitude for a given amount of power, thus causing the lowest possible copper
loss. But there are also cases in which it is preferable to operate the motor at
other power factors. For instance, in an industrial plant whose total electric
load is predominantly inductive, an overexcited synchronous motor would help
to raise the overall power factor of the plant. It will also be seen later on that
overexcitation tends to improve the stability of a synchronous motor. At any
rate, it is characteristic of the synchronous motor (in contrast to the induction
motor) that its power factor can be arbitrarily adjusted.

10-3 THE TORQUE ANGLE

The reader is invited to take another look at the three phasor diagrams of
Fig. 10-2. It might strike him that the phasor representing the excitation voltage
Ey always appears in the fourth quadrant. It is not hard to see that this is no
accident. In a motor, the armature current I, must be in the first or fourth
quadrant; thus, it must have a positive real component, i.e., one pointing to the
right. Therefore, the phasor (-jXI,), which lags I, by 90° must have a negative
imaginary component, one pointing downward.

So the field excitation voltage £, must lag the terminal voltage V, if the ma-
chine is to act as a motor. By contrast, if it is to be a generator, Ef has to lead V,
as will be confirmed in the next chapter. In other words, the angle between
these two voltages, called & in Fig. 10-2, has to be reversed for a change between
motor and generator operation, a change that calls for a reversal of the electro-
magnetic torque.

It must be explained that this angle § is related to, but not identical with the
angle given the same symbol in Chapters 8 and 9. There, it was the angle be-
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tween the rotor mmf wave and the flux distribution. Using the reasoning given
in Section 9-6, and Figs. 9-8 and 9-9, it can be seen that the same angle appears
between the voltages Er and E, since Ef lags the rotor mmf wave F by 90°,
whereas E lags the resultant mmf wave R by 90°. But when the equivalent cir-
cuit was simplified by the merger of two reactances into one (see Figs. 9-10 and
9-11), the voltage F disappeared. In its place, there is the terminal voltage V,
which differs from E only by the effects of the imperfections of the armature
winding.

From here on, the symbol & will be used consistently for the phase difference
between Er and V, as it is in Fig. 10-2. It will now be shown that this new angle
& deserves being called a torque angle (as did the old one). This will be done by
means of a derivation that begins by equating the imaginary parts of both sides
of the complex equation, Eq. 10-1.

SnEp= dnV - Im(jX,1,) (10-2)
Since E;=E;[-8 ,V=V[0, and (-jX,1,) = X1, /-0 - 90°, Eq. 10-2 becomes
-Efsin & =-X;I, cos 8 (10-3)

which may be confirmed by a look at the geometry of the phasor diagrams of
Fig. 10-2. Now solve for the real part of I,

E
I, cos === sind (10-4)
Xs
and substitute this into the general expression for power in a balanced three-
phase circuit, applied to the motor armature (and remembering that V and I, are
phase quantities)

P=3VI, cos 0 (10-5)
resulting in a new expression for power
L 106
* X sin (10-6)

Since the armature resistance is being neglected, there are no armature copper
losses to consider, and so P is the amount of power that is converted into me-
chanical form

P=Tu,, (10-7)

where wy, is the synchronous angular velocity in mechanical radians per second.
Thus, the electromagnetic torque is

1 3VE
ws,, X

sin & (10-8)
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This result puts the spotlight on the angle §. For one thing, it confirms that a
change of its sign means a change between motor and generator operation. Fur-
thermore, within the limits of motor operation, the equation indicates that the
angle § must change with the load (i.e., increase when the load increases, etc.)
In particular, when Ey and V are in phase, the power and the torque are zero.
This can be confirmed from a phasor diagram describing this condition. If both
phasors Ef and V are in the axis of reference, then the phasor of their difference
(-7X,I,;) must also be horizontal, and, thus, the current phasor must be vertical,
either upward (leading) for overexcitation or downward for underexcitation but
in any case vertical, so that the power factor cos 8 is zero.

On the other hand, the sine of an angle cannot be more than unity. SoEq.10-8
says that, for a motor supplied from an infinite bus (which means that V, wq,
and X; are all constant), for a given field excitation (E is constant), there is a
maximum torque. It is

1 3VE,
ws, Xs

Tmax -

(109)

and it occurs when the torque angle reaches 90°.

10-4 3 AS A SPACE ANGLE

In addition to being defined as a phase difference (which is a normalized time
interval), the torque angle & also has a physical significance as a space angle, as
will be explained now.

Figure 10-3 represents a developed armature (stator) surface, with the location
of the conductors of phase a (the reference phase) indicated. In addition, each
of the two diagrams displays a broken line as a schematic description of the rotor
poles (assumed to be salient in order to be more easily visualized), and a sinusoid
representing the field (rotor) mmf wave F, which is the one responsible for the
excitation voltage Ey. Both diagrams are to be understood as snapshots taken at
the instant when the terminal voltage has its maximum value. The rotor and all
waves are assumed to move from left to right.

In Fig. 10-3a, the rotor poles are exactly opposite the conductors of phase a.
Thus, the voltage £ r must have its maximum value at this instant. So the two
voltages Ey and V¥ have their maximum values at the same instant; thus, they are
in phase with each other, and the electromagnetic torque is zero. This diagram
depicts an idealized no-load condition, because it shows what would occur if an
ideal motor (one with zero power losses) were to run at no-load, i.e., idling,
without driving anything. An actual motor does have power losses (to be studied
later), and even when it is idling, it still needs a certain electromagnetic torque,
although one that is much smaller than at full load.
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Fig. 10-3. Two snapshots at the instant when v = V... (a) E7 in phase with V; (b) Ef
lagging V.

Now consider the case illustrated in Fig. 10-3b. This time, at the instant when
U = Vpmax, the rotor poles (and the rotor mmf wave) have not yet reached the
position facing the armature conductors, so the excitation voltage has not yet
reached its maximum value; in other words, it lags the terminal voltage. So this
diagram depicts a case of a motor operating under load.

Since the rotor travels 2 electrical radians during every cycle, the phase angle
by which Ef lags Vequals the space angle by which the rotor positions in the two
diagrams differ from each other, expressed in electrical radians or degrees.
Therefore, the torque angle § can be defined as the space angle (in electric units)
by which the rotor position at any instant differs from what it would be at the
same instant in the ideal no-load case. It is so marked in Fig. 10-3b.

10-5 TRANSIENT CONDITIONS

In any steady-state condition, the rotor runs at synchronous speed, thereby
maintaining a constant value of the torque angle §. Consider, for instance, a
motor running at no-load (idling), corresponding approximately to the case of
Fig. 10-3a where 6 = 0. Now let the load torque be a step function of time,
rising from zero to T at the instant ¢;. According to Eq. 10-8, this calls for a
new value of 8§, say 6,. When a steady state is reached again, the rotor has
“fallen back™ by the same angle &,, and its position may be that of Fig. 10-3b.
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h

t

43
Fig. 10-4. Transient conditions. (a) motor load increasing at t = t;; (b) motor load de-
creasingatt =t,.

To bring about that change of 8, there must have been a time interval during
which the rotor moved a little more slowly, i.e., at slightly less than synchronous
speed.

Figure 10-4a describes what could happen during this fransient interval in
terms of angular velocity. (The actual wave shape will be discussed in the next
two sections.) The diagram is somewhat exaggerated: the moment of inertia of
an actual rotor and its load would cause the relative range of the speed change
to be much less than shown. Figure 10-4b is a similar picture describing the case
when the load torque is decreased at the instant ¢, .

So the actual speed of a synchronous motor is not always synchronous speed,
only in the steady state. In general, the angular velocity is

db

- (10-10)

W= Wy
where w and w, must be expressed in electric radians per second, because the
angle § is always expressed in electric units. The minus sign in Eq.10-10 assumes
(arbitrarily) that the angle & is considered positive for motor operation (ie.,
when Ej lags V).

By integrating Eq. 10-10 from some instant before the beginning of the
transient interval to some instant after the end of this interval, it is seen that the
shaded areas in the diagrams of Fig. 10-4 represent the amount by which the
torque angle & changes during the transient interval.

The reader can now begin to understand (after perhaps having wondered for
some time) how a synchronous motor maintains its synchronous speed in the
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steady state. It happens “automatically,” and the key lies in the torque angle.
Suppose, for instance, the motor “wanted” to run a little more slowly. Equa-
tion 10-10 indicates that this would bring about an increase of §, and Eq. 10-8
confirms that this would increase the electromagnetic torque, which in turn
would accelerate the motor back to its synchronous speed. Similarly, a momen-
tary increase in speed would result in a temporary decrease of 6, and thereby of
the torque, which would restore synchronous speed.

This kind of game does actually occur whenever the load torque changes. A
steady state constitutes a condition of equilibrium in which the electromagnetic
torque equals the opposing load torque. (This ignores the torque caused by the
“rotational” losses, which are to be discussed later. At this point, this torque
may be either disregarded for the sake of greater simplicity, or it may be thought
to be already included in the load torque.) A change of load torque upsets this
equilibrium and produces a resulting torque that must change the speed of the
motor:

dw
T - Tioad =JT”’ (10-11)
where J is the moment of inertia, i.e., the quantity that takes the place of the
mass when Newton’s law of motion is applied to rotating motion. In this equa-
tion, the angular velocity must be expressed in mechanical units, which is the
meaning of the subscript m.

So an increased load torque does indeed slow down the motor temporarily, in
agreement with Fig. 10-4a, until the angle § is sufficiently increased to restore
the torque equilibrium and the synchronous speed. Similarly, the motor re-
sponds to a decreasing load torque by a temporary increase in speed and, thereby,
a reduction of the angle &, again leading to a new state of equilibrium.

Comparable chains of events are brought about by changes of field excitation.
Suppose, for instance, a synchronous motor is driving its load in the steady state,
when an operator chooses to raise the field excitation (presumably in order to
change the power factor). By Eq. 10-8, this must increase the electromagnetic
torque, which temporarily increases the speed. The reader should be able to
visualize (and confirm from Eq. 10-10) that this reduces the torque angle and
thereby the torque until equilibrium is restored. In the new steady state, the
angle § is smaller than it was before the change, which checks against any pair of
diagrams in Fig. 10-2.

10-6 ANALYTICAL APPROACH

To find out more about what happens in a transient interval, some substitutions
will be made in Eq. 10-11. The mechanical angular velocity is obtained by
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changing Eq. 10-10 from electrical to mechanical units for a machine with p
poles:

2 dbé
= W, ~ ; @ (10-12)
Its derivative with respect to time is
dwy,, 2 d%
a p arf (10-13)

For the electromagnetic torque, Eq. 10-8 is abbreviated to
T=Ksiné (10-14)

where K is a constant for a given motor supplied from an infinite bus and operat-

ing at constant field excitation.* With these substitutions, Eq. 10-11 may be
rearranged to read

2J 4%

p dit

This differential equation displays the fact that, in a synchronous machine,

both the inertial torque and the electromagnetic torque are functions of the

same variable, the all-important angle §. To obtain an analytical solution in

general terms, i.e., without specific numerical values and without digital or

analog computation, this equation will now be linearized, which limits its
validity to small values of § for which sin § ~8. So

2J d6
p df*

+ K sin § = Tigaq (10-1 5)

+ K8 ~ Tioa (10-16)

which is a linear second-order differential equation of a type very familiar to
most readers from the study of many mechanical as well as electrical phenomena
(pendulum, spring, LC circuit, etc.). Its solution, obtained by either classical
(time domain) or transform methods, may be written as

= Tioad Tioad 1 db .
6= X +16(0+) - K | Coswort oo @t (04) sin wot (10-17)

This means that the angle § performs harmonic oscillations at the radian
frequency

(10-18)

*Strictly speaking, this constant is valid only at synchronous speed. The justification of
its use in the context of speed variations lies in the fact that such variations normally
amount to only small fractions of synchronous speed.
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and, like the variables in the mechanical and electrical analogies mentioned
above, it never settles down to its steady-state value

T,
B = % (10-19)
at which the electromagnetic torque would equal the load torque.

In order to illustrate this result graphically, consider the special case of a load
torque rising suddenly, at the time ¢ = 0, from zero (ideal no-load) to Tjy,q. In
this case, the initial value of the angle & is zero, and so is the initial value of its
derivative, as can be seen from Eq. 10-12, with w,,(0+) = wg,, - Thus, for this
case

. Tload T load
6= X Kk Coswol (10-20)

and the mechanical angular velocity, obtained from Eq. 10-12, is

2woTiond .
oK sin wqt (10-21)

Wy = Wy, -
Both results are illustrated in Fig. 10-5.

The reader might like to follow the course of events, as it is shown by this
diagram. At the initial instant, the motor runs at synchronous speed, and the
angle § is zero. From there on, there is a load torque that opposes the motion
and, at first, slows down the motor. The angle § increases and reaches the value
called for by the load torque after a quarter-period. (This refers to the period of
the oscillations, 7 = 2m/wq, where wy is given in Eq. 10-18, and has nothing to
do with the period of the alternating currents and voltages in the armature cir-
cuit.) But at this instant the speed is less than synchronous, and during the next
quarter-period, while the speed returns to its synchronous value, the angle 6
reaches twice its steady-state value. And so it goes on, without any chance ever
to reach a steady state.

The linear approximation of Eq. 10-16 limits the validity of Egs. 10-17 to 10-21
and of Fig. 10-5 to fairly small values of the torque angle. When & gets to be too

Fig. 10-5. Undamped oscillations.
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large for that, the response waveforms are no longer sinusoidal, but the princi-
ples remain the same. In particular, if changes of § do not cause any power con-
sumption, these changes will continue “forever” as undamped oscillations.

Equation 10-15 is a second-order differential equation, indicating that the sys-
tem it describes contains two independent energy-storing elements. One of them
is easily enough identified as the inertia of the rotating masses that causes the
storage of kinetic energy. The other may be called the stiffiess of the machine,
in analogy to the elastic property of a spring, which “wants” to stay in its rest
position and resists being forced away from it, just as the synchronous motor
runs with an angle 6 = 0 unless it is forced to behave otherwise. Its electromag-
netic torque increases with increasing values of § (Eq. 10-14), just as the elastic
force of a spring is proportional to its stress.

10-7 DAMPING

Undamped oscillations are obtained as the solutions of differential equations like
10-15 or 10-16, but they hardly ever occur in nature. This is so because these
equations fail to make any provision for the presence of energy-consuming ele-
ments in the otherwise oscillatory system. Actually, as the reader knows, a
pendulum has some friction, an LC circuit has some resistance. As a result,
oscillations in such systems are either damped or completely suppressed (over-
damped).

Figure 10-6 shows a typical underdamped response in terms of the angular
velocity and the torque angle of a synchronous motor whose load torque is a
step function of time, as it was in the previous diagram. The variables oscillate
with steadily diminishing amplitudes, reaching a final steady state asymptotically,
ie., in theory after infinite time but practically after only a few time constants.
(The time constant of an exponentially damped sinusoid is the time at which
its envelope is the fraction 1/e ~ 37 percent of its inijtial value.) The degree of
damping may be expressed by the damping ratio, a constant that relates the
period of the undamped oscillations to the time constant.

Fig. 10-6. Damped oscillations.
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Such an oscillatory transient behavior (in contrast to an overdamped one) of a
synchronous machine is sometimes called hunting, and it can have serious dis-
advantages. For one thing, it can lead to a loss of synchronism, as will be seen
in the next section. It also raises the possibility of resonance: if the load torque
of the motor (or the driving torque of the prime mover, in the case of a genera-
tor) is time-varying, it might have a periodic component whose period happens
to coincide with that of the transient oscillation of the synchronous machine,
leading to increasing rather than decaying amplitudes.

What helps to damp the natural oscillations of a synchronous machine? The
answer is that any closed current path on the rotor serves to produce a damping
torque. At synchronous speed, there is no voltage induced in such a path be-
cause there is no relative motion between the rotor and the magnetic field. But
in a transient condition, the mmf wave produced by the stator currents con-
tinues to rotate at synchronous speed while the rotor itself runs at a slightly
different speed. No calculation is required to show that the result of this relative
motion must be some damping. A voltage induced in a conducting path causes a
flow of current and thereby the consumption of power in the resistance of that
path, and the reader knows that any power consumption caused by oscillations
tends to damp them.

Any closed current path—the term includes the field winding (even though that
is closed through its source and possibly other external elements), and it includes
eddy-current paths in the rotor, which exist to some extent even in a laminated
core. So every synchronous machine has some damping. But most synchronous
motors (and many generators) are equipped with additional short-circuited
windings on the rotor, in order to obtain sufficient damping. They are called
damper windings or, by their French name, amortisseur windings, and they are
essentially identical with a certain type of rotor windings (known as squirrel
cages) much used for induction motors. They do not interfere with the steady-
state operation of synchronous machines, because they carry currents and pro-
duce torques only at speeds other than synchronous. In fact, it will be shown
in the study of induction machines that such a torque is roughly proportional
to the “slip speed” W, = Wy, at least for speeds not too far away from syn-
chronism. Consequently, as Eq. 10-12 indicates, a damping torque is represented
by a first-order term (i.e., a term containing the first derivative of 8) to be added
to the left side of Eq. 10-15 (or 10-16), in analogy to the way a resistance term
is added to the equation of an LC circuit.

On the other hand, the torque expressed by Eq. 10-8 (or 10-14) is effective
only at synchronous speed. To see what happens to this torque at other speeds,
consider a rotor rotating at a constant but not synchronous speed. This condi-
tion can be viewed as a case of the angle & changing at a uniform rate. So this
torque would have to alternate with the sine of the angle, and its average value



212 ELECTRIC POWER SYSTEM COMPONENTS

would be zero. This is what is meant by the frequently heard statement that a
synchronous motor cannot run at any other than synchronous speed.

To return to the damper winding of a synchronous motor: it also serves
another purpose, apart from that of suppressing hunting. It enables the motor
to start.

Consider a synchronous motor at standstill, with its armature disconnected
from its source (or infinite bus). Now let that connection be made, by closing
the appropriate switch. Since the motor speed at that moment is not synchro-
nous (but zero), the motor could not start up at all if it were not for its damping
torque, which is mainly produced by the damper winding. Due to that torque,
the motor does accelerate until it reaches a speed close enough to synchronism
so that sin § stays positive long enough for the motor to be “pulled into’ syn-
chronism. Further details about starting will be discussed in the context of in-
duction motors.

10-8 STABILITY

The discussion of both the steady state and the transient operation of the syn-
chronous motor has focused on the importance of the torque angle §, but up to
now the possibility that this angle might exceed 90° has not yet been considered.
The diagram of Fig. 10-7 represents Eq. 10-14, and it has been drawn in order to
raise and illustrate the pertinent question: for a given value of the load torque,
say T,, could the motor operate in the steady state at the angle §,, as well as
até 1?

This question can be answered with the aid of the reasoning used previously in
Section 10-5. For instance, assuming that steady-state operation at §, were pos-
sible, consider the effects of a slight increase of the load torque. As the reader

8 8,

Fig. 10-7. Torque versus torque angle.
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knows, this produces an instantaneous decrease of speed, which raises the angle
&. But this time, the increase of the torque angle makes the electromagnetic
torque smaller, not larger. As a result, the imbalance of the torques gets worse,
not better, and the motor speed goes down further. Instead of reaching syn-
chronous speed again, the motor “loses synchronism,” or “falls out of step,”
and comes to a full stop.

This situation is a typical case of an unstable equilibrium. The simplest and
most familiar example of this phenomenon is observed by anybody who tries to
balance an object, for instance a pencil, on one point (see Fig. 10-8). The posi-
tion shown in this diagram is one of equilibrium because the weight of the pencil
and the opposing force cancel each other. But the slightest horizontal force
upsets this equilibrium, because, after the motion it causes, the two vertical
forces form a couple that tends to turn the pencil farther away from its position
of equilibrium. The pencil falls down.

As a further illustration of the instability of the motor running at the angle §,,
let the load torque decrease rather than increase. The resulting chain of events
brings the motor to its stable condition of equilibrium, at the angle §,. The
point is that in no case can operation at §, be maintained in the face of even
the most minute change of load (or of field excitation).

So a synchronous motor can operate in a stable steady state only at a torque
angle of less than 90°. The maximum torque expressed in Eq. 10-9 is the stability
limit of the motor. It follows that the stability problem of the synchronous
machine is a consequence of the nonlinearity of the relation between the torque
and the torque angle. If the linearized relation of Eq. 10-16 were generally valid,
not only for small values of 8, (see the broken line in Fig. 10-7), there would be
no way the motor could lose its stability. (For the benefit of readers familiar
with classical feedback control theory, which is so much concerned with the
question of stability, it may be added that an analysis of the linearized equation,
Eq. 10-16, with or without a first-order term for damping added, will confirm
this statement.)

7

Fig. 10-8. Unstable equilibrium.
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It has now been shown that a synchronous motor may operate at any value of
8 between zero and 90°, in a condition known as steady-state stability , or static
stability. But there are cases in which the motor is unable to reach such a condi-
tion, namely when this condition would have to be reached as a consequence of
a load change that is too big or too sudden. Figures 10-5 and 10-6 show how the
angle & tends to “overshoot the mark,” in response to a step function load
torque, to an extent depending on the damping. (Even though these figures are
drawn for the linearized case of Eq. 10-16, the general shape of the curves re-
mains valid in any case, except in the overdamped case.) It can happen that the
steady state cannot be reached because of this overshoot. Such a case is referred
to as a lack of transient stability .

To examine this possibility, refer to Fig. 10-7. Assume again that the load
torque rises suddenly from zero to T, at the time ¢ = 0. The motor slows down
instantaneously and thereby permits the angle § to rise from zero to §,. But at
the instant when this value is reached, (point A4 in Fig. 10-7), the motor speed is
less than synchronous, and so the motor cannot yet settle down to its new steady
state. Instead, the angle & keeps increasing, which makes T > T, to accelerate
the rotor back to its synchronous speed. While this goes on, § increases until
synchronous speed is reached. If this occurs at a value of §, like that of point B
of the diagram, then the resulting torque, still positive, accelerates the rotor
further, above synchronous speed, which decreases § toward §,. Oscillations con-
tinue, with decaying amplitudes due to damping. So the final steady state can
be reached, even though § becomes temporarily more than 90°. But if syn-
chronous speed is not reached at point B, and if the angle § increases above &,
before this speed is reached, then the motor cannot regain synchronism and
steady state; it falls out of step and slows down to a standstill.

If the field excitation is raised, the range of torque values for steady-state
operation is increased and the transient stability is improved because the margin
of safety for maintaining synchronism is increased. This can be seen from
Eq. 10-8, which indicates that more field excitation (a higher value of Ey) lifts
the entire curve of Fig. 10-7 upward and thereby increases the maximum torque.

10-9 ANALYTICAL STUDY OF TRANSIENT STABILITY

Let a synchronous motor operate in the steady state, with its torque angle at
some value called 8, (which need not be zero). Then let the load torque be in-
creased suddenly, at the instant #,, to a new value requiring a new torque angle
called 6,. Assume that the response is neither overdamped nor unstable. The
torque angle reaches its final value &, for the first time at the instant #,, and
then overshoots it, reaching its maximum value §, at the time ¢,.

These events are sketched in Fig. 10-9. The problem is to find the maximum
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fo 51 5]
Fig. 10-9. Torque angle versus time.

torque angle 8, because transient stability requires that, at this maximum value
8,, the electromagnetic torque be larger than the load torque.
The solution is based on the kinetic energy

J 2
Wk= (;m

(10-22)

of the rotating masses. Note that the angular velocity is synchronous at the
instant ¢, and that it has the same value again at the instant ¢, (from Eq.10-12).
Therefore, the kinetic energy has the same value at these two instants, or

Wi(£2) - Wi(20) =0 (10-23)

The change of kinetic energy during this time interval (from ¢, to #,) can be
expressed as the integral of its infinitesimal increments. For this purpose, let
Eq. 10-22 be differentiated with respect to time (by means of the “chain rule”):

dW _

J
ar "7 Gem)

dw,,
dt

dw,,

ar (10-24)

=Jw,,

Thus Eq. 10-23 can be rewritten in the form

L aw, h dw,,
j;o ar dl‘—j; Jwn, ar dt=0 (10-25)

o

and, by substituting Eq. 10-12,

t,
> 2 db\ dwy . _
ft J(wsm-p dt) " dt=0 (10-26)
(]
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which breaks up the integral into a sum of two terms. In the second term, the
accelerating torque T - T\y,q is introduced from Eq. 10-11, leading to

L dw 2 (- as
Jows,, f d—t’" dr - > f (T - Tioaa) 7 d=0 (10-27)
t, t,

In each of the two terms, the integration variable may be changed, together with
the corresponding integration limits. So the equation becomes

W, ) 8,
Jog / dwy, - —f (T - T19aq) 46 =0 (10-28)
" w p 8
m, [
The first term is zero because w,, has the same (synchronous) value at the two
instants ¢, and #,, leaving the significant result

82
f (T - Ty02a)d6 =0 (10-29)
8

0

Figure 10-10 illustrates this equation. The integral is represented by the dif-
ference of the two shaded areas. To satisfy Eq. 10-29, the two areas must be
equal to each other, which determines the angle §,. In the case shown in the
diagram, the electromagnetic torque is larger than the load torque when the
maximum angle §, is reached, which means that the machine maintains syn-
chronism. Thus the T versus § diagram provides a clear and elegant method of
determining whether or not a certain step load increase throws the motor out
of synchronism.*

The beauty of Eq. 10-29 lies in the fact that it remains valid regardless of
what the relation between T and 8 is. (For instance, it will be seen in Chapter 12
that the simple Eq. 10-14 has to be modified for machines with salient poles.)
It is even valid for damped oscillations, provided the damping torque is included
in Tjgaq- But in that case the integral cannot be interpreted as an area in a dia-
gram. What can be done is to use the equal areas criterion without the damping
term, and to conclude that, if that criterion indicates stability, the damping can
only be beneficial, by increasing the margin of stability.

*This equal areas method has been known for a long time, but it has been wrongly pre-
sented in several textbooks. The point is that the area in the 7 versus § diagram is not the
change in kinetic energy.
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Fig. 10-10. Transient stability.

10-10 METHODS OF CONTROLLING FIELD CURRENT

In the past, rheostats have been used to adjust the magnitude of d-c field cur-
rents. Electric motors and generators have long lives, so many rheostats are still
in use. Their big disadvantage is the loss of energy due to heating in the rheostat.

Figure 10-11 shows a rheostat connected in series with a field winding. The
position of the moving arm sets the value of resistance R, and permits adjust-
ment of the field current between a minimum of V/(R; + Ry) and a maximum
of V/Ry. This circuit is used for the field winding of motors where it is desired
to keep the field current above some minimum value.

Figure 10-12 shows a rheostat used as a resistance voltage divider to give an
adjustable voltage across the field winding. This permits the field current to be

Fig. 10-11. Two-point rheostat.
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Fig. 10-12. Three-point rheostat.

adjusted between zero and a maximum of V/Ry. This circuit is used for the field
winding of generators where the ability to set the field current to zero is impor-
tant enough to accept the heat loss in both R, and R,.

New installations usually use diodes and thyristors to supply and control the
direct current needed in field windings of electric machines. This also eliminates
the need for a d-c source, a need that previously often constituted a drawback of
synchronous machines. A solid-state diode consists of one PN junction. A typi-
cal voltage-current characteristic is shown in Fig. 10-13. Solving problems for
circuits containing diodes is simplified by assuming that the diode functions as a
switch that is closed when conditions permit forward current, and open when
conditions permit reverse voltage. For such an ideal diode, one of two cases
must hold at all times: (1) If v =0, then i > 0. This is the condition for forward
current. We say the diode is conducting. (2) If i =0, then v < 0. This is the
condition for reverse voltage, and we say the diode is blocking.

Fig. 10-13. Voltage-current characteristic of a diode.
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Fig. 10-14. Half-wave diode rectifier circuit.

Figure 10-14 shows a single-phase, half-wave diode rectifier supplyinga field cit-
cuit. Clearly, both diodes cannot conduct simultaneously. When the source volt-
age is positive, D2 is blocking, D1 is conducting, and a positive half-cycle of voltage
is impressed on the terminals of the field winding. When the source voltage is
negative, D1 is blocking, D2 is conducting, and the voltage across the terminals
of the field winding is zero. As D2 will always provide a path for current, if no
other path is available, this is called a freewheeling diode. This prevents exces-
sive voltage that could appear if the energy stored in the self-inductance had to
be dissipated quickly by interrupting the current. The function of voltage across
the terminals of the field winding is shown in Fig. 10-15. The average value of
this function is Vip.x/#. The d-c component of the field current is Vi, /7R.
The field voltage has sizeable harmonics. The inductance of the field circuit per-
forms as a low pass filter that allows the d-c component of current to flow and
nearly eliminates the harmonics. Note that the source current is a rectangular
pulse of current during a positive half-cycle of voltage and that it is zero during
a negative half-cycle of voltage.

Figure 10-16 shows a single-phase, full-wave diode rectifier supplying a field
circuit. Clearly D1 and D3 cannot conduct simultaneously, and similarly for
D2 and D4. When the source voltage is positive, D1 and D2 conduct. The posi-
tive half-cycle of voltage is impressed on the field circuit. When the source volt-
age is negative, D3 and D4 conduct. The source is then connected to the field

_—_——Vmax7\—-——7
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Fig. 10-15. Load voltage of half-wave rectifier.
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Fig. 10-16. Single-phase, full-wave diode rectifier.

Fig. 10-17. Load voltage of full-wave rectifier.

circuit so as to again impress a positive half-cycle of voltage. The function of
voltage across the terminals of the field winding is shown in Figure 10-17. The
average value of this voltage function is 2V, /. The d-c component of the
field current is 2V, /mR. One advantage of the full-wave circuit over the half-
wave circuit is the delivery of more power to the field winding. Another advan-
tage is that the current through the source is alternating rectangular pulses. The
field current has extremely small harmonics. The source current has sizeable
harmonics, but it has no d-c component.

The thyristor is a semiconductor device containing three internal PN junctions
in series. It has three terminals. Two of these, the anode and the cathode, may
be thought of as the terminals of a switch. The third one, called the gate, per-
mits the control of whether the switch is open or closed. The v - i characteristic
of a thyristor is shown in Fig. 10-18. With no gate current, the thyristor behaves
like an open switch. During this OFF-STATE, it may absorb either forward or
reverse voltage with only small current. With gate current applied, the thyristor
will perform essentially the same as a diode. We call this the ON-STATE. If the
thyristor has forward voltage while OFF, the transition to ON can be effected by
applying gate current. If forward current is flowing in the ON-STATE, the gate
loses its control. The thyristor will be turned off only when the circuit condi-
tions establish reverse voltage between the cathode and the anode. After the
current is zero, control by the gate is reestablished. It is helpful to assume ideal-
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ON—STATE

Fig. 10-18. Voltage-current characteristic of thyristor.

ized properties for a thyristor. In the OFF-STATE, it is an open switch. In the
ON-STATE, it is an ideal diode.

Figure 10-19 shows a two-pulse converter circuit for energizing a field winding.
Diodes D1 and D2 can play the role of a freewheeling diode, so the voltage across
the field can never be negative. As a positive half-cycle of the source voltage be-
gins, thyristor T'; can be OFF. Let a firing pulse be applied to the gate at cwt; =
a. We call « the firing angle. T'1 goes into the ON-STATE, and current flows
through T'1 and D1. The remaining portion of a half-wave of voltage is impressed
on the field winding. From 7 to 7+ «, it is freewheeling with thyristor T2 in
OFF-STATE. At wt, =m +a, a firing pulse is applied to T2. T2 goesinto the
ON-STATE, and current flows through D2 and T2. Figure 10-20 shows the volt-
age function across the terminals of the field winding. As the firing angle « is.
varied from zero to w, the average value of field voltage varies from 2V, /7 to
zero, respectively. The average of the voltage function is given by V,,. =(1 +
cos @) Vpax/m. The source current consists of alternating rectangular pulses.
The fundamental component of the source current lags behind the source volt-

age with a phase angle equal to a/2.

D2 +

W _of

Fig. 10-19. Two-pulse converter.
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Fig. 10-20. Waveforms of a two-puise converter.

For high power, a three-phase bridge converter is used. The circuit shown in
Fig. 1021 has an inductive load. The load current is assumed to be constant
d-c, as the inductance effectively filters out all a-c components. The voltage
source is symmetrical three-phase with a-b-¢ phase sequence. Figure 10-22
shows some of the waveforms associated with this circuit. Observe that the
three line-to-ine voltages are shown, and the negative of these three functions is
also shown. Let ¢' denote (wf) (180°/7). This can be considered a normalized
time, namely time divided by 7/360, where T is the period. The idea is that

a ?b [ X4
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Fig. 10-21. Three-phase bridge converter.
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Fig. 10-22. Waveforms of three-phase bridge converter.

only two thyristors conduct simultaneously, thus connecting the load to two of
the source terminals. Proper symmetrical control of the thyristors will result in
six identical pulses of load voltage during one cycle of the source.

First, assume TS and T6 are conducting as the 60° point is approached. Let
T1 be OFF. After ¢' passes 60°, v, is positive and is the forward voltage across
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T1, because c is tied to m through 75. At ¢ =60° + , a firing pulse is applied
to the gate of T1, so it goes into the ON-STATE. T6 continues in the ON-
STATE. Now, a is tied to m by T1, so the voltage v, is impressed on 75 as re-
verse voltage. TS5 goes into the OFF-STATE. Current flows from line a to line b
through T1,R, L, and T6. The voltage across the load is v,p.

Next, observe that at #' = 120° v,, becomes positive. T2 is OFF, and v,, is the
forward voltage across it because b is tied to n through 76. At# =120°+a,a
firing pulse is applied to the gate of T2, turning it ON. Now, c is tied to n, so
the voltage vy, is applied to 76 as reverse voltage. 76 goes into the OFF-STATE.
Current flows from line a to line ¢ through T'1, R, L, and T2. The voltage across
the load is v,.

Next, at ¢' = 180°, vy, becomes positive. At ' =180° +a, T3 is turned ON,
and T1 is turned OFF. The voltage across the load is vp.. This process contin-
ues. Firing pulses are applied at 60° intervals to the thyristors in sequence.
Each thyristor is ON for an interval of 120°. Voltage pulses of 60° duration are
successively applied to the load while only two thyristors are ON at any time.
These voltage pulses are segments of the line-to-line voltages. The value of the
firing angle « determines the wave shape of the load voltage. For « greater than
60°, the load voltage v can have momentary negative values. The self-inductance
forces current to flow through the two thyristors that are ON, even if the voltage
v is negative. Figure 10-22 is drawn for a = 45°, The average value of load volt-
age is Vave = (3Vmax/m) cos a. The average value of load voltages is adjustable
between zero (for & = 90°) and 3V, /7 (for a = 0°).

For a=0°, the performance of this circuit duplicates that of a bridge rectifier
using six diodes instead of thyristors. Using diodes, the transfer of current from
one diode to another occurs at 60°, 120°, 180°, etc. when the voltage function
would produce forward voltage across one of the diodes. Using thyristors en-
ables the firing to be delayed by the angle a and, thus, to effect the adjustment
of the load voltage. The angle o has been chosen to be measured from the point
in the cycle when the transition would have occured if diodes were used.

Only one line current is shown in Fig. 10-22. The current flowing from the
source into terminal a is i, =iy; - ip4. This current consists of alternating rect-
angular pulses. The fundamental component of the current i, lags behind the
line voltage v, by the angle 30° + a. This current lags behind the phase voltage
Vg by the angle a.

Actual circuits will not quite match ideal cases in detail. The transfer of cur-
rent from one thyristor to another cannot occur instantaneously. The transition
time can be a small portion of a pulse duration, so the wave shapes are close to
ideal. Diodes and thyristors do not have zero forward voltage when conducting.
Accordingly, actual voltage across the load will be slightly less than ideal. There



SYNCHRONOUS MOTORS 225

is heat produced in the thyristors or diodes, so proper heat sinks must be pro-
vided to carry the heat away fast enough to maintain safe temperatures in the
solid-state devices.

10-11  EXAMPLES
Example 10-1 (Section 10-3)

A 75-HP, three-phase, six-pole, 60-Hz, Y-connected, cylindrical-rotor synchro-
nous motor has synchronous reactance of 9.6 2 per phase. Its rated terminal
voltage is 500 v per phase. (a) Find the value of excitation voltage that makes
maximum torque to be 120 percent of rated torque. (b) The machine is operated
with the excitation voltage set as in part (a). For rated load torque, find the
armature current, the power factor, and the torque angle.

Solution
(2) Synchronous speed is
wg = 4nflp = 4n(60)/6 = 407 rad/sec
Prateq =75 X 746 = 56,000 w
T:ateqd = 56,000/407 = 446 nm
The excitation voltage can be found from Eq. 10-9
Trax = 3(500) (Ef)/40m(9.6) = 1.2(446)
E;=430v
(b) The torque angle can be found from Eq. 10-6

p-= 3(500) (430)
9.6

§=56.5°

sin & = 56,000

For the equivalent circuit of Fig. 10-1, Kirchhoff’s voltage equation is given
by Eq. 10-1. Use the terminal voltage as the reference

V =500/0°

For motor operation, the excitation voltage lags behind the terminal voltage
by angle 6

E,=430/-56.5°
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Solve Eq. 10-1 for the armature current

_V-Er_ 500/0° - 430/-565°
iX; j9.6

I, =53.3/-45.3°

Thus, I, =53.3 amp. The power factor is P.F. = cos 45.3° = 0.7 lagging.

Example 10-2 (Section 10-7)

A 2400-HP, 5500-v (line to line), four-pole, 50-Hz synchronous motor has syn-
chronous reactance of 11.3 £ per phase. The moment of inertia of the motor
and the connected load is 677 kgm?. The damping is 728 nm/rad/sec. The exci-
tation voltage is the same magnitude as the terminal voltage. (a) Find the un-
damped angular frequency and the damping ratio. (b) Let the load be periodic
with Tp (f) = Ty cos (7.11 ¢) nm. Find the value of T, that will limit §,,, to
1 radian.
Solution
(a) With a damping term, Eq. 10-15 has the following form

2J d*s dé

— —5 +Kp —+Ksiné =T,

p af P TERETIL

Use Eq. 10-8 to find K

1 3(3180)(3180) .
IT'=———sin6=17,1 i
S0m 113 sin ,100 sin § nm

K =17,100 nm/rad
The linearized approximation and the characteristic equation are

2(677) d%8 ds
— —+728 —+17,1006 =0
4 dr? dt

s +2.155+505=0
The general form of this equation is
§2 + 2twes + w3 =0
from which we find the undamped natural frequency
wo =4/50.5 =7.11 rad/sec
We also find the damping ratio ¢
£=2.15/2(7.11)=0.15
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(b) The frequency of the load pulsations is the same as the undamped natural
frequency of this system. We must find the sinusoidal steady-state solution
of the linearized equation

d*s db
338 E—;+ 728 Zi?+ 17,1008 =T, cos (7.11%)

Use w =7.11. The solution is obtained from

5(t) = Re [T1€7°%/(338(jw)? + 728 (jw) + 17,100)]
=Re [(T1/j 5200)e’**] = -(T,/5200) sin (7.117)

If § is not to exceed 1 rad, then T, = 5200 nm. Observe that a constant
torque of 5200 nm would only require § to be 0.304 rad, while the pulsat-
ing load causes the swings to be approximately three times as great.

10-12
10-1.

10-2.

10-3.

10-4.

10-5.

PROBLEMS

A three-phase, Y-connected, cylindrical-rotor synchronous motor has
synchronous reactance of 7 £ per phase. One point on the open-circuit
characteristic is given by 400 v per phase for a field current of 3.33 amp.
This motor is operated with terminal voltage of 400 v per phase. The
armature current is 50 amp with power factor of 0.85 leading. Find the
excitation voltage and the corresponding field current.

A three-phase, Y-connected, cylindrical-rotor synchronous motor has
synchronous reactance of 1.9 . It is operated with terminal voltage of
254 v per phase. The field current is set to give an excitation voltage of
380 v per phase. The load is enough to make the torque angle be 30
electrical degrees. Find the armature current and the power factor.

A three-phase, Y-connected cylindrical-rotor synchronous motor has
synchronous reactance of 4 £ per phase. It is operated with terminal
voltage of 254 v per phase and armature current of 40 amp with power
factor of 0.8 leading. Find the excitation voltage, Ef, and the torque
angle, §, for this operating condition.

A three-phase, 440-v (line to line), 60-Hz, Y-connected, cylindrical-rotor
synchronous motor has synchronous reactance of 2.6 £2 per phase. With
the motor running at no load, the field is overexcited and set to make
the line current to be 19.5 amp. With the same field setting, load is then
added to become 100 HP. Find the torque angle § for this operating
condition.

A three-phase, cylindrical-rotor synchronous motor operates with termi-
nal voltage of 127 v per phase, and excitation voltage of 159 v per phase.
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10-6.

10-7.

10-8.

10-9.

10-10.

10-11.

10-12.

10-13.
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The armature current is 130 amp at unity power factor. Find the syn-
chronous reactance for this machine.

A three-phase, cylindrical-rotor synchronous motor has a synchronous
reactance of 0.8 per unit. Energy is supplied from an infinite bus, with
Vous = 1 per unit, through a transmission line whose inductive reactance
is 0.2 per unit per phase. The load connected to the motor requires 70
percent of rated motor torque. The excitation voltage is 1.35 per unit.
Find the line current and the terminal voltage of the motor.

A three-phase synchronous motor has a synchronous reactance of 0.7
per unit. Rated voltage on the open-circuit characteristic is obtained by
field current of 0.82 per unit. This motor is to be operated at rated volt-
age, rated kva, and 0.8 leading power factor. Find the per-unit field cur-
rent for this condition.

A three-phase, cylindrical-rotor synchronous motor has six poles and the
frequency is 60 Hz. When the load power is changed fromno-load to aload
of 80 kw, the rotor position shifts 12 mechanical degrees fromitsno-load
position. Find the maximum power that this motor can develop (ie.,
the pull-out power). Also find the maximum torque.

A three-phase, Y-connected, cylindrical-rotor synchronous motor has
synchronous reactance of 3 2 per phase. The terminal voltage is 254 v
per phase. When operating with a power of 43 kw, the field current is
adjusted to make the torque angle be 30 electrical degrees. For the same
field current, find the maximum power that can be developed. Also find
the rms magnitude of the armature current at pull-out.

A 2400-HP, 5500-v (line to line), four-pole, 50-Hz, synchronous motor
has synchronous reactance of 14 £ per phase. The moment of inertia of
the motor and the load is 460 kgm?. The damping is 364 nm/rad/sec.
(a) Find the undamped angular frequency and the damping ratio. (b)
Let the load be periodic with Tz, (£) = T; cos (10.9 ) nm. Find the value
of T} to limit 8,4, to 1 radian.

The machine in Problem 10-10, with excitation voltage of 5000 v per
phase, is operating at noload. Find the value of load torque T, that can
be applied as a step function and assure that the machine can maintain
synchronism.

The machine in Problem 10-10 is operating with load torque at one-half
of rated value. Find the minimum setting for the excitation voltage, E 't
to be sure that an increase from one-half of rated load to full load (i.e., a
step function of one-half of rated torque) does not cause the machine to
lose synchronism.

For the series field rheostat circuit in Fig. 10-11, the d-c voltage source is
250 v and the field resistance is 100 . Find the power in the field resis-
tance and the power in the rheostat for (a) R, =100 Q, (b) R, =200 Q.
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For the three-point rheostat circuit shown in Fig. 10-12, the d-c voltage
source is 250 v and the field resistance is 100 £2. The total resistance in
the rheostat (R, + R;) is 200 . Find the power in the field resistance,
the power in R,, and the power in R; for (a) R, =58.6 Q,(b) R; =
100 &, (c) R; =200 Q.

For the full-wave rectifier circuit shown in Fig. 10-16, the source voltage
is 325 sin 377¢. The load resistance is 130 §2. Find the rms value of for-
ward current through diode D1. Find the value of peak reverse voltage
across diode D1.

For the two-pulse converter shown in Fig. 10-19, the source voltage
is 325 sin 377¢. The load resistance is 130 . The firing angle is 60°.
Find the rms value of the forward current and the peak value of reverse
voltage for (a) thyristor T1, (b) diode D1.

For the three-phase bridge converter shown in Fig. 10-21, v, (¢) = 325
sin 377¢. The load resistance is 130 . The firing angle a is 45°. Find the
rms value of forward current through thyristor T1. Find the peak re-
verse voltage across thyristor 771.

For the converter in Problem 10-17, the firing angle is changed to 75°.
Find the load current. Sketch the load voltage waveform.
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Synchronous Generators

111 THE LOAD

As the reader knows, the terms synchronous motor and synchronous generator
refer not to two different types of machines but rather to two different modes
of operation of the same machine. They are discussed in two separate chapters
because many of their problems of operation are different. Nevertheless, much
of what was learned in the previous chapter (on motors) is also valid for gen-
erators, and some of the contents of this chapter are equally applicable to
motors.

Since a generator is basically a voltage source (although not an ideal one),
its load can be expressed in terms of its output current. For the sinusoidal
steady state, this means the current magnitude and phase angle, or the com-
bination of these two pieces of information, i.e., the current phasor. It is also
possible to express the load in terms of (average) power and reactive power,
or to combine these two values to form the complex power. The relations
between these various load quantities, for balanced three-phase systems, are
given in Section 6-4.

In addition, the term load, as applied to a generator, may also mean the
various devices that draw current from the generator and consume power sup-
plied by it. One such device is the familiar linear resistor, used for a wide
variety of practical purposes, e.g., as a heater, a toaster, an incandescent lamp,
etc. The current it draws is directly proportional to the magnitude (and inde-
pendent of the frequency) of the voltage supplied to it. Other types of loads
are equivalent to impedances; they draw currents whose magnitudes and phase
angles depend on both the magnitude and the frequency of the voltage. A
major part of the load of most generators consists of electric motors. The
quantitative contribution of a motor to the total load depends again on the
magnitude and frequency of the voltage, but also on that motor’s own mechan-
ical load.

Each individual load device is designed to operate at its rated voltage and
frequency, and its operation is likely to be adversely affected by changes in
these two quantities. For instance, an incandescent lamp operating at too
low a voltage gives less light than intended, whereas at too high a voltage it
is brighter but has a shorter lifetime. This fact alone is sufficient to require

230
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generators to be operated at substantially constant magnitudes of output
voltage.

The requirement to maintain a constant frequency is much more stringent.
This is so largely because the load of a generator may include electric clocks,
which are small synchronous motors, running at strictly synchronous speed.
To guarantee that such clocks show the right time, generators must not only
maintain their rated frequency within very small tolerances, but must also
compensate for their departures from that frequency. In other words, both
the frequency and its time integral are constantly checked and corrected, usu-
ally by automatic devices.

The control mechanisms for the magnitude and the frequency of the output
voltage of a synchronous generator are essentially separate. Adjusting the
frequency means adjusting the speed with which the generator is driven. It
requires manipulating whatever affects the speed of the prime mover: the
steam valve of a turbine, the water gate of a waterwheel, the throttle of an
internal combustion engine, etc. Once the frequency is right, the way to adjust
the voltage is by changing the field excitation, using the control devices (rheo-
stat or thyristor) discussed in Section 10-10.

11-2 STEADY-STATE OPERATION

For this analysis, the same equivalent circuit will be used as in the previous
chapter for motor operation, except for the assumed positive direction of the
armature current. The diagram of Fig. 11-1 has a current arrow that makes
the output power positive when the current phasor I, is in the first or fourth
quadrant, with the terminal voltage V in the axis of reference. A comparison
with Fig. 10-1 also shows that the two diagrams are drawn in such a way as
to suggest a power flow from left to right. Finally, the reader is reminded that
the diagram represents one phase of a three-phase armature circuit.
Kirchhoff’s voltage law applied to the circuit of Fig. 11-1 reads

E =V +jX,I, (11-1)

Fig. 11-1. Current direction choice for generator operation.
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which is identical with Eq. 9-17 (but different from Eq. 10-1, which refers
to Fig. 10-1). It is graphically represented in Fig. 11-2, which is the counter-
part, for generator operation, of Fig. 10-2. For these diagrams, the terminal
voltage V is assumed to be of constant (rated) magnitude, and it is used as
the axis of reference. The phase angle of the current depends entirely on the
load; the three phasor diagrams shown represent the cases of loads with unity,
lagging, and leading power factors, respectively. The power is assumed to be
the same in all three cases.

The following observations can be made from the diagrams:

(a) The phasor of the field excitation voltage for any case of generator opera-
tion leads the terminal voltage phasor, in contrast to motor operation. In
other words, the torque angle § is reversed, as might have been expected. (The
reader should ascertain that this is not the consequence of the choice of current
arrow direction. If that arrow is reversed, the plus sign in Eq. 11-1 must be
replaced by a minus sign.)

Ey
iXl,
5
@ I, v
E :
iXsl,
5
b) -
® -
Ia
ijIa
Ey
§
© >

Fig. 11-2. Phasor diagrams: (a) current in phase with voltage; (b) current lagging voltage;
(c) current leading voltage.
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Fig. 11-3. Comparison of two load conditions (same power factor).

(b) Calling the amount of field excitation for the unity-power factor load
(Fig. 11-1a) normal, the other two diagrams show that a lagging (inductive)
load requires overexcitation, whereas a leading (capacitive) load calls for under-
excitation. These rules are just the opposite of the ones for motor operation.
It is plausible to think of a lagging load as one that needs the higher field ex-
citation because it has to store magnetic field energy, and the rule for a leading
load then follows logically.

It must be pointed out that the amount of field excitation needed depends
not only on the phase angle, but also on the magnitude of the current drawn
by the load. As an arbitrarily chosen example, Fig. 11-3 illustrates the case
of a lagging load again (as in Fig. 11-2b), but for two different values of I,,
both at the same angle #. Clearly, an increased load current calls for an in-
crease in field excitation, if the assumption of a constant terminal voltage
is to remain valid.

11-3 VOLTAGE REGULATION

What happens if the field excitation of a generator is not adjusted with chang-
ing load? The answer is that the terminal voltage cannot be expected to remain
constant. Out of the infinite variety of possible cases, this study will be limited
to the most significant ones: a change from full-load (rated load) to no-load
(open-circuit), for any given power factor.

Begin with rated operating conditions: V = Vigeq, and I=1Iaeq =P, ratea/
3Vated, in terms of phase (not line) values of voltage and current. Next, the
field excitation voltage is obtained from the phasor equation Eq. 11-1, either
analytically, or graphically as in Fig. 11-2. (Note that this result depends on
the power factor of the load.) The problem is to determine what happens to
the terminal voltage, if the load is now disconnected, i.e., if the generator is
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made to operate at no-load but without any further adjustment of the field
current.

It might be thought, and a look at Fig. 11-1 might seem to confirm, that
Ej is the no-load voltage and the answer to the problem. Actually, however,
the value thus obtained would be quite far from correct, in most cases. The
point is that the use of synchronous reactance is based on the assumption of
linearity. Therefore, the field excitation voltage E; obtained from Eq. 11-1
must be considered as a fictitious voltage, namely, the voltage that would
be induced in the armature by the field current alone, in the absence of an
armature current, if the saturation were unchanged. In the actual open-circuit
condition, when the armature current is zero, the saturation may be quite
different.

The situation is illustrated by Fig. 11-4 in which the open-circuit characteristic
is redrawn from Fig. 9-13. What the concept of synchronous reactance does is
to replace that curve by a straight line through the origin, to represent the
function E versus I; for the degree of saturation that corresponds to the point
of intersection. (Saturation is related to the reluctance of the magnetic circuit.
For instance, at point ¢ of the diagram, there is more saturation, and the reluc-
tance is larger, than at point @ or b). The line Oc is the relation between E
and I for the saturation of point ¢, etc.

Practical experience has shown and confirmed that reasonably good results
are obtained by choosing that straight line that intersects the open-circuit
characteristic at the point whose ordinate is rated voltage. Having determined
the value of Ef for a given full-load condition (from Eq. 11-1), the correspond-

Fig. 11-4. Saturated synchronous reactances.
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Fig. 11-5. Regulation obtained by saturated synchronous reactance method.

ing value of the field current is then found on that line. (See Fig. 11-5.) The
point is that, even though Ep is a fictitious quantity, the value of I is real
and measurable; thus, the magnitude of the open-circuit voltage is related to
that of the field current by the open-circuit characteristic, as shown in Fig. 11-5.

Finally, the term voltage regulation, or simply regulation, is defined as it was
for power transformers (Section 5-6) as the normalized difference between
the full-load and no-load values of the terminal voltage

i - W Vopen- circuit ~ Ve
e= NL FL _ ’open circuit rated (11_2)
VFL Vrated

The whole procedure, known as the saturated synchronous reactance method,
is illustrated by Example 11-1. It should be noted that different values
of regulation are obtained for different load power factors, just as with
transformers.

11-4 POWER SYSTEM OPERATION

The discussion of generator operation in this chapter up to this point is based
on a seemingly natural assumption, namely that the generator under study
has to supply its own load. This leads to the requirement that every load change
has to be met by an adjustment of the prime mover torque (in order to main-
tain the frequency) and of the field excitation (in order to maintain the voltage).
Actually, this assumption describes a case that is only occasionally encountered.
The normal situation is one in which several, or even many, generators work
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together to supply the entire load of a power system, or of several intercon-
nected power systems.

In that case, each generator delivers a portion of the total power (and of the
total reactive power) demanded at any instant by the entire load of the system
or systems. The distribution of the load among the generators may be planned
(and constantly readjusted) to satisfy requirements of reliability and economy.
For instance, there should always be enough generators in operation ready to
meet any foreseeable increase of the load. (Such generators, not delivering
any power but capable of doing so at short notice, are referred to as spinning
reserve.) Also, it is desirable that every generator be operating at that load
condition at which it is most efficient, and differences in operating cost be-
tween the various generators should be taken into consideration. For instance,
generators driven by waterwheels do not consume any fuel; thus, their operating
expense is mainly depreciation of the initial cost and interest. To a large extent,
the same can be said of generators driven by steam turbines whose power is
obtained from nuclear fission. On the other hand, when fossil fuels (oil, coal,
or gas) are the prime sources of energy, then every kilowatt hour generated
has to be paid for in terms of fuel consumption.

This was just a quick and superficial glimpse of the problems of operating
(to say nothing of planning and designing) an electric power system. These
problems are beyond the scope of this book. What will be discussed here is
merely how to operate an individual generator to satisfy the demands made
on it by the power system operators.

In general, it is hardly feasible and certainly not desirable to adjust each
generator in the system simultaneously in response to every load change. In-
stead, the generators may be divided into two groups: one or more of them
are to be continuously adjusted to maintain the magnitude and frequency
of the voltage; all the others are thereby, in effect, connected to an infinite
bus (see Section 10-1), as are all the loads, including the synchronous motors
studied in the previous chapter.

11-56 GENERATOR AND INFINITE BUS

The operation of a generator connected to an infinite bus is significantly dif-
ferent from that of a single generator, as discussed in the first three sections
of this chapter. Since the magnitude and frequency of the terminal voltage
are fixed quantities, they are not affected by any manipulation of that generator
or its prime mover. So the question may be asked: what happens when the
generator field current or the prime mover torque are adjusted?

The first point to be kept in mind is that, since the frequency is fixed, the
steady-state speed of the generator and the prime mover cannot change either.
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Fig. 11-6. Prime mover characteristic.

It is strictly held to its synchronous value defined in Section 9-3. Any instan-
taneous departure from that speed changes the electromagnetic torque so as
to accelerate or decelerate the rotor back to synchronous speed, just as it does
in motor operation.

The next point to be understood is that the prime mover has a definite rela-
tionship between its speed and its torque. Figure 11-6 shows what the graph
of such a relationship, called the speed- torque characteristic of the prime mover,
may look like. The negative slope of the curve is both natural (to carry a higher
load, a machine must slow down, just as a human being would) and necessary
in the interest of stability (as will be explained later). Similar characteristics,
incidentally, will be encountered and discussed at greater length in the study
of induction motors and d-c motors. At this point, however, we are concerned
with devices of mechanical engineering, like turbines or internal combustion
engines.

This characteristic determines the torque produced by the prime mover at
synchronous speed, and thereby the output power of the prime mover, which
is the input power of the generator. Deducting the power losses of the gen-
erator from its input leads to a practically constant amount of power con-
tributed to the electric power system by the generator.

There is only one way to change that power: the prime mover’s speed-torque
characteristic itself must be changed. This can be done by adjusting whatever
it is that controls the power input to the prime mover. For instance, to increase
the power, one must open the steam valve, or “step on the gas,” etc. This
shifts the curve to the right, as sketched in Fig. 11-7, and thereby raises the
torque at synchronous speed, from a to b to c.

In the case of such a change, there is a fransient interval between the initial
and the final steady state. For instance, when the prime mover input is raised,
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T

Fig. 11-7. Family of characteristics.

the increased torque must at first accelerate the rotor and thereby advance it
relative to its previous steady-state position. In other words, the angle § is
increased, and so is the electromagnetic torque, according to Eq. 10-8, which
is valid for motor as well as for generator operation. There is a difference,
however: the angle § and the torque are both reversed; now the torque opposes
the motion, as it must for generator operation. So the rotor eventually returns
to its synchronous speed, probably with some oscillations similar to those
drawn in Fig. 10-6. In the new steady state, the torque angle is increased.
Thus, the final result of the shift of the prime mover characteristic is that the
generator contributes more power to the infinite bus. Figure 11-8 shows two
phasor diagrams illustrating the conditions before and after the change. In
this example, the generator was originally operating at normal field excitation

®)

Fig. 11-8. Two load conditions, same field excitation: (a) original steady state; (b) final
steady state after increase of prime mover torque.
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(unity power factor) for its load. In the final steady state, it is somewhat
underexcited (delivering leading current) for the increased load, since its field
excitation voltage has the same magnitude as before.

The other possible adjustment of a generator connected to an infinite bus
is that of the field excitation. Here it must be emphasized that such an adjust-
ment cannot change the power, which is fixed by the generator’s synchronous
speed and the prime mover’s speed-torque characteristic. What actually happens
can be seen from phasor diagrams like those of Fig. 11-2. For example, let the
generator be normally excited (as in Fig. 11-2a), and then let the field excitation
be increased. This produces a momentary increase in the electromagnetic
torque. Since this torque opposes the motion, it tends to retard the rotor and
thereby to reduce the angle 8, leading toward a new steady-state condition like
that of Fig. 11-2b, in which the generator, now overexcited, delivers a lagging
armature current. In other words, the generator now has an output of lagging
reactive power.

Similarly, a decrease in field excitation forces the generator to deliver leading
reactive power, as seen in Fig. 11-2c. Generally speaking, then, any adjust-
ment of the field excitation changes the kilovars, whereas the prime mover
characteristic must be adjusted to change the kilowatts.

11-6 SYNCHRONOUS REACTORS

There is a special condition to be studied, for its theoretical and its practical
significance. The prime mover (of a generator connected to an infinite bus)
can be adjusted to make the power output of the generator equal to zero. In
such a condition, the two voltage phasors E; and V must be in phase with
each other (so that their difference, the power angle 8, is zero), but they may
well have different magnitudes. In that case, there is a nonzero armature cur-
rent, obtained from Eq. 11-1 as

_ Ef‘V
L= —x,

(11-3)

This current phasor is at a right angle against that of the terminal voltage, as
can be seen from Eq. 11-3 or from the fact that the power factor cos § must be
zero. The current either leads or lags the terminal voltage by 90°, depending
on whether Ef is smaller or larger than V; in other words, whether the machine
is under- or overexcited.

With the phase angle § = £90°, the synchronous machine is in a borderline
condition between generator and motor operation, unless the power losses
in the machine are considered. Strictly speaking, if the phase angle 8 is to be
exactly 90°, the synchronous machine must be driven by a prime mover whose
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function it is to supply the power losses. In that case, the synchronous machine
should be considered as a generator with a zero power output. Actually, the
same purpose can be served much more economically by omitting the prime
mover and operating the synchronous machine as a motor at no-load. Since
its power losses are covered from the electric power system, its power factor
can only be close to zero, like that of an impedance whose real part is much
smaller than its imaginary part, i.e., its reactance. This is why a synchronous
machine in this mode of operation is usually referred to as a synchronous
reactor.

There are several reasons why synchronous reactors are used in power sys-
tems. The most frequent purpose is the improvement of the power factor.
In many power systems, a substantial amount of inductive (lagging) reactive
power is needed, due to the presence of many electromagnetic devices like
induction motors and transformers, and to the inductances of overhead trans-
mission lines. An overexcited synchronous reactor in parallel to the load can
be viewed either as a motor drawing capacitive (leading) reactive power to
compensate for the inductive one of the load, or as a generator supplying the
load with the inductive reactive power it needs.

Such a power factor correction is illustrated in Fig. 11-9 for a power system
consisting of a generator, transmission line, and load only (no infinite bus in
this case). The main property of the transmission line is its inductive reactance
(to which may be added that of transformers at either or both ends of the
line). The phasor diagram of Fig. 11-9a shows voltage and current relations
without any power factor correction, whereas in Fig. 11-9b, an overexcited
synchronous reactor has been added. The voltage at the load terminals is as-
sumed to be the same in both cases. The following conclusions can be drawn:

(2) The total current (drawn by the combination of load plus reactor) is
smaller than the load current alone. This can be confirmed from the magnitude
relation

P

= — 11-4
P 3Vpcos(9 ( )

which is written here in terms of phase (not line) quantities, for a balanced
three-phase circuit. As a result, the generator, transmission line, and trans-
formers may have lower ratings and, thus, be less expensive than they would
be without power factor correction, or else the power losses in these compo-
nents are substantially reduced.

(b) The terminal voltage of the generator (Vgen in the diagram) differs less
from Vj,,g When the reactor is added. In the power system of Fig. 11-9, this
means that the generator needs less voltage adjustment with changing load,
leaving this function largely to the reactor. In the more likely case that the
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Fig. 11.9. Power factor correction: (a) system without reactor, lagging load current;
(b) with reactor.

1, load

generator is supplying additional loads and should operate at a constant terminal
voltage, voltage fluctuations at the terminals of “our” load can be minimized
by adjusting the reactor. More generally, then, synchronous reactors can be
used also to adjust the voltages at various points of power systems.

It must be mentioned that (static) capacitors can be, and are being, used for
the same purposes in power systems. But synchronous reactors lend them-
selves well to smooth automatic control methods, since it is only the field
current that has to be adjusted, and no switching in a power circuit is required.
In addition, synchronous reactors can also be operated with underexcitation,
to be equivalent to inductors, something that capacitors cannot do. The need
for such an operation can arise at times of low power demand, particularly in
systems in which transmission and distribution circuits consist largely of
underground cables, because such cables have inherently more capacitance
and less inductance than overhead lines.

11-7 POWER LOSSES AND EFFICIENCY

The subject of this section is basically valid for motors as well as for generators.
It is being discussed in this chapter because most generators have higher power
ratings than most motors, so that the economic aspects of generator operation
may be considered as even more significant than those of motor operation.

The nature of power losses in a synchronous machine is to a large extent
the same as what was encountered in the study of transformers. The main
difference is that the motion of a rotating machine is responsible for addi-
tional losses that do not occur in a transformer. Such losses are caused by
the inevitable friction between the rotor shaft and the bearings that support
the rotor. There is some additional friction between slip rings and brushes.
Furthermore, there is windage produced by the motion of the rotor. Windage,
however, is not only a cause of power being lost, i.e., converted into heat,
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it is also a desirable factor in getting the heat dissipated by convection (see
Section 1-6).

It should be noted that friction and windage losses do not at all depend on
the load condition of the machine. They are functions of the speed only;
thus, for most synchronous machines, they are constant. The same thing can
be said, at least as an approximation, of the core losses (hysteresis and eddy-
current losses). These losses depend on the speed and the magnitude of the
rotating magnetic flux. For a constant terminal voltage, this flux does not
vary with the load except as a result of imperfections (resistance and leakage
reactance) of the armature windings.

What these two groups of losses have in common is not only their indepen-
dence of the load condition, but also the fact that they occur as a consequence
of the rotation of the rotor and the flux. For this reason, they are often lumped
together under the name rotational losses (with the symbol P,,;). They account
for the difference between the input torque of a generator (or the output
torque of a motor) on the one hand, and the electromagnetic torque on the
other. It is the electromagnetic torque T whose product by the mechanical
angular velocity w, is the power converted from mechanical into electrical
form (or vice versa).

In addition, there are the so-called copper losses, i.e., the power losses in
the resistances of the stator and rotor windings. Here, the difference from
the transformer is that, in the synchronous machine, only the armature (stator)
windings carry load currents, whereas, in the transformer, both the primary
and the secondary windings carry currents that depend on the load. Conse-
quently, in the synchronous machine, only the copper losses in the stator
windings constitute load losses, i.e., power losses that are proportional to the
square of the load current.

By contrast, the current in the field (rotor) winding is arbitrarily adjusted to
some desired value, either for the purpose of obtaining a certain value of ter-
minal voltage, or (in the case of an infinite bus) to obtain the desired amount
of reactive power. In any case, the field current does not vary by itself when
the load changes. Thus, the power loss in the field winding may be considered
constant.

Figure 11-10 is a graphical description of the various power conversions
that occur in a synchronous generator operating in the steady state. The main
direction of power flow is from left to right. Note that the generator has two
inputs, a mechanical one (from the prime mover) and an electric one (from
the source of the field circuit), and that the latter is entirely consumed in the
field circuit resistance. A similar power flow diagram can be drawn for a syn-
chronous motor, showing two electric inputs, the various losses, and the me-
chanical output.
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Fig. 11-10. Power flow diagram of synchronous generator.

Based on the division of the power losses into constant losses and load losses,
the shape of the efficiency-versus-load curve and the location of its maximum
can be found in the same way as for transformers. The reader is referred to
Eq. 5-56 and to Fig. 5-11. For any constant power factor of the load, the
maximum efficiency occurs at that load at which the load losses equal the
constant losses. In the case of the synchronous generator, this statement can
be derived by differentiating the efficiency

_ 3VI, cos §
3VI, cos 0 + Pyt + ReI} +3R, 12

N (11-5)
with respect to I, (holding all other parameters constant), and setting the
derivative equal to zero, with the result

Prot +RpI2=3R, I (11-6)

11-8 STABILITY

The subjects of steady-state stability and transient stability were first encoun-
tered in the context of motor operation, where they can arise from changes
in the mechanical load. Analogous problems in the operation of a synchronous
generator connected to an infinite bus can arise from changes in the speed-
torque characteristic of the prime mover. The prime mover torque must not
be raised above the maximum electromagnetic torque of the generator (Eq.
10-9), and there are definite limits for sudden changes of the prime mover
torque.

Generally speaking, a synchronous machine loses its synchronism if the power
angle & exceeds its steady-state limit of 90° and is unable to return below that
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value. A generator, in such a condition, would be driven by its prime mover
at continuously rising speeds, and some automatic safety device would have
to curtail the power input to the prime mover drastically to avoid serious dam-
age. Such circumstances, however, are most unlikely to occur in any power
plant. For one thing, the prime mover has its own torque limitations, which
are presumably intended to match those of the generator. And as far as prob-
lems of transient stability are concerned, it should be realized that major changes
in the prime mover torque probably cannot be produced so suddenly that they
would resemble step functions.

Another hypothetical case of instability could arise if the speed-torque char-
acteristic of the prime mover had a positive slope. Consider, for instance,
the possibility of a momentary decrease, no matter how slight, of the prime
mover torque. It would bring about an instantaneous decrease in speed which,
with a positive-slope characteristic, would further reduce the prime mover
torque, leading toward a complete loss of power, at least in the case of a gen-
erator supplying its own load.

None of this should be taken to imply that stability problems in the operation
of generators exist only in theory. On the contrary; current issues of profes-
sional publications are filled with papers on problems of power system stability.
But such problems involve much more than the properties of generators and
their prime movers. Among other things, such studies have to consider the
presence of the numerous and intricate automatic control devices that, as the
reader knows, serve to maintain the magnitude and frequency of the voltage
in the face of constantly and unpredictably changing loads. In addition, dis-
turbances to be considered do not have to come from the prime mover. In
fact, they mostly originate in the electric network to which the various gen-
erators are connected, their interplay with each other and with switching appa-
ratus, transmission and distribution circuits, and loads. Such studies require
a much more extensive background in subjects like feedback control theory
than is expected of the reader of this book, and must, therefore, be considered
to be beyond its scope.

11-9 ELECTRIC TRANSIENT PHENOMENA

The transient phenomena discussed in Chapter 10, and again referred to in the
foregoing section, are mechanical in nature. The time functions involved are
space angles and angular velocities, and the energy-storing elements are inertia
and stiffness, all mechanical quantities. Yet the reader knows very well that
inductances are also energy-storing elements and that they are responsible
for transient phenomena in electric circuits.

It is possible to separate such electrical transients from mechanical ones
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whenever the time constants (or periods) that characterize them are sufficiently
far apart from each other. Fortunately, this is the case for many electric motors
and generators. Consider the case when mechanical transients are much slower
than electric ones. Then, in the first short time interval following a disturbance
(no matter whether this is mechanical or electrical in nature), the electric cur-
rents change very quickly before the speed of the machine can undergo any
substantial change. By the time that the mechanical transient phenomena
reach significant proportions, the electric ones have already decayed to very
small, possibly negligible magnitudes, a condition sometimes referred to as a
quasi-steady state. In other cases, separating electric from mechanical tran-
sients does not lead to trustworthy numerical results, but has still some utility
for the physical insight it gives.

The need to study electrical transients in synchronous machines arises mostly
for generators that may be subjected to sudden major changes in the electric
circuit connected to their armature terminals. The most drastic changes of
this kind are not due to loads being switched on or off, but rather to accidental
short circuits or breaks in transmission conductors. The classical case is a
three-phase short circuit in the vicinity of the armature terminals of a generator.

Unfortunately, the analysis of such a case is far more complicated than it
might appear at a first glance to a reader familiar with circuits consisting of
inductances and resistances. Simply short circuiting the terminals in the equiv-
alent circuit of Fig. 11-1 will not do. The picture of a rotating stator mmf
wave at rest relative to the field circuit, a picture which is basic to the entire
method of analysis of synchronous machines used up to this point, does not
do justice to electric transient phenomena. The first reason for this is that
any changes of armature currents (other than the balanced sinusoidal ones
of the steady state) induce voltages by transformer action in the field circuit
and thereby cause the field current to change.

For purely qualitative purposes, a useful picture can be obtained by thinking
of the field winding as the secondary of a transformer whose primary is the
armature winding. In the steady state, when no voltages are induced in this
secondary, it is as if this transformer were open circuited. For this condition,

L X, X,

Fig. 11-11. Simplified transformer equivalent circuit.
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its primary may be described by the synchronous reactance X;. On the other
hand, under transient conditions (e.g., after a sudden disturbance), the field
circuit resembles much more nearly a short-circuited transformer secondary.
For this case, a new equivalent reactance describing the armature winding
(the primary) may be introduced. It is known as the transient reactance Xj,
and it is much smaller than X|.

The fact that the driving-point reactance of a transformer is much smaller in
the short-circuit condition than in the open-circuit condition can be confirmed
by a look at an equivalent circuit. For instance, the diagram drawn as Fig. 11-11
is the same as that of Fig. 5-7, except that the energy-consuming elements
are neglected, and the ideal transformer is omitted because it is irrelevant when
only a comparison of open-circuit and short-circuit conditions is to be studied.
A short-circuit connection is drawn as a broken line.

This picture is complicated by the fact that most synchronous machines are
equipped with damper windings (see Section 10-7). It has been found that
a damper winding tends to reduce further the equivalent reactance of the arma-
ture winding to a new value called the subtransient reactance with the symbol
X;.

An oscillograph of an armature current of a generator undergoing such a
condition shows a transient component that actually decays at a rate according
to two distinguishable time constants. The very rapid decay at the first short
time interval following the disturbance corresponds to the smaller time constant
7", whereas the subsequent slower decay is determined by a larger time constant
7'. It is logical to associate the lower reactance X; to the lower time constant
7", since the time constant of an RL circuit is L/R. So the whole transient
phenomenon can be divided into a “subtransient interval,” attributed mainly
to the effect of the damper winding, and a “transient interval,” in which the
field winding is the determining factor.

For an analytical approach to such problems, aiming at a determination of
the various currents as functions of time, it must, first of all, be realized that
the three armature currents have different initial values at the instant of the
disturbance. Consequently, there is no per-phase description; each current
must be found as a separate time function. Even if there is no damper winding,
equations must be set up for four circuits (three armature, one field), each
with resistance and self-inductance and each coupled to all the others by mutual
inductances. Worst of all, the mutual inductances between any one armature
circuit and the field circuit change periodically as the field winding rotates
relative to the armature windings. If there is a damper winding (which is the
more frequent case), there are additional equations, additional terms in each
equation, and other complications.

This system of equations can be made manageable by means of a transfor-
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mation, the principles of which can be understood after the concept of direct-
and quadrature-axis quantities has been introduced. For this, the reader is
referred to the next chapter.

11-10 BRUSHLESS EXCITATION FOR A LARGE ALTERNATOR

A synchronous generator as large as 500,000 kva could require 1500 kw to
supply the d-c field on the rotor. If slip rings are used, the electric energy
lost in the brush contact is several kilowatts. The slip rings and brushes are
mechanical devices that wear, so they require attention and maintenance.
A scheme for supplying and controlling the d-c field of a large alternator is
shown in Fig. 11-12. The idea is to mount a rectifier on the shaft, so d-c can
be supplied to the field of the alternator by a direct connection. The input
energy for the rectifier is obtained from the a-c armature windings on the

Rectifier D-c field
on rotor on rotor
Permanent
magnets A-c armature
on rotor on rotor
Diode
Pilot Exciter rectifier Main Prime
exciter alternator alternator mover
alternator
A-c
output
S(:htd_ Gate
state control
converter
A-c armature - *
on stator D-c field A~c armature
on stator on stator

Fig. 11-12. Schematic of brushless excitation for a large alternator.
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rotor of the exciter. This exciter is an example of an alternator with the a-c
windings on the rotor and with the d-c field on the stator. The d-c field of
the exciter is controlled by a solid state converter. One example is the thy-
ristor bridge described in Section 10-10. An increase in the exciter field current
would result in an increase in the voltage generated in the exciter armature.
This increased voltage would cause an increase in the d-c field current of the
main alternator. It is desirable to operate without depending on some external
source of electricity, so a third generator, called a pilot exciter, with a per-
manent magnet rotor is used to supply the energy through the converter to
the exciter field. A 2000 kva. exciter could require a pilot exciter of 15 kva.
The rotors of the main generator, the exciter, and the pilot exciter are all
mounted on the same shaft. So, the prime mover, in driving the shaft, must
supply energy to all three machines.

11-11  EXAMPLES
Example 11-1 (Section 11-3)

The alternator in Example 9-1 has synchronous reactance of 11.3 £ per phase.
It is operated as a generator with rated terminal voltage and rated load current
with power factor of 0.9 lagging. Use the synchronous reactance method to
find the excitation voltage, the excitation required in the rotor field, and the
voltage regulation.

Solution

The armature resistance is neglected, so we use the equivalent circuit in Fig.
11-1. Use the terminal voltage as the reference

V=3810/0° =3810+;0v
I, =262 /-25.8° amp
jX, 1, =(11.3 /90° ) (262 [-25.8° ) = 2960 [64.2° =1290 +j 2660 v
Use Eq. 11-1 to find the excitation voltage
Ef=V +jX,1,=5100 +j 2660 = 5750 /27.5° v

Figure 11-2b illustrates these conditions. The excitation is determined as
shown in Fig. 11-5. The excitation for rated voltage of 3810 volts at no-load
is 17,000 At/pole. The excitation for Ey is (17,000 X 5750)/3810 = 25,700
At/pole.

Compare this with the answer to Example 9-1. From the open-circuit char-
acteristic, find the no-load voltage that would be generated for F =25,700
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At/pole
VaL =4270v
The voltage regulation is found using Eq. 11-2
e=AL - VrL)/VEL = (4270 - 3810)/3810=0.12

Example 11-2 (Section 11-5)

A synchronous generator supplies power to a large system through a trans-
mission line. The receiving system is equivalent to an infinite bus whose voltage
is 1 per unit. The synchronous impedance of the generator is 1 per unit. The
reactance of the transmission line is 0.4 per unit, based on the generator rating.
Resistances are negligible. The power output is adjusted to be 1 per unit. The
excitation of the generator is adjusted so that the power factor at the infinite
bus is unity. (a) Find the voltage and the power factor at the generator ter-
minals. (b) Find the excitation voltage of the generator. (c) With the excita-
tion of part (b), find the maximum power that could be delivered. Find the
terminal voltage for this condition.

Solution

(2) The equivalent circuit of the generator and the transmission line is shown
in Fig. E-11-2a. Use V3 as the reference

Vg=1/0°=1+j0pu
I,=1/0°=1+j0pu

The terminal voltage of the generator is the input voltage to the transmis-
sion line, and can be found from Kirchhoff’s voltage equation

V=Vg+iX71,=(1+j0)+j(04)(1+j0)=1+;04=1.08/21.8° pu

The power factor is P.F. = cos 21.8° =0.93 lagging. The phasor diagram is
shown in Fig. E-11-2(b).

Fig. E-11-2a.
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Fig. E-11-2b.

(b) The excitation voltage of the generator can be found using Kirchhoff’s
voltage equation for the generator

Er=V+iX,I,=(1+j04)+;(1)(1+j0)=1+;14=1.72/54.5° pu

(c) The power formula in Eq. 10-6 can be modified to apply to this system.
Use bus voltage in place of the generator terminal voltage. Use total re-
actance in place of X alone. Use angle 85 in place of §. Maximum power
occurs for 85 =90°. We can solve for one phase

b VB (A7)
max T ¥ +Xr 14

23 pu

using rated phase power as the basis.
E/leads Vp by the angle 55 = 90°
E;=1.72/90° =0+ 1.72pu

Find the current from Kirchhoff’s voltage equation for the system

__E-V5 _(0+j1.72)-(1+/0)
¢ i+ Xr) 1(1.4)

=142 /30.2° =123 +;0.71 pu
The terminal voltage can be found from
V=Vg +jXrI,=(1+j0)+;(0.4)(1.23+j0.71)
=0.72+j0.49 = 0.87 /34.6° pu
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For the pull-out condition, the torque angle & for the generator is 90° -
34.6°=55.4°. We can use this as a check on the computation and to
check the power formula

VE 0.87)(1.72

sin 55.4° =1.23 pu
Xs (1)

which agrees with the previous answer.

11-12 PROBLEMS

11-1.

11-2.

11-3.

11-4.

A two-pole, 60-Hz, Y-connected, three-phase synchronous generator
is rated 5000 kva, 2400 v per phase, 694 amp per phase. Data for the
open-circuit characteristic are as follows:

E 2110 2570 2860 2990 3080 3140 v per phase
Iy 60 80 100 120 140 160 amp

The synchronous reactance is 4.05 € per phase. This machine is oper-
ated with rated terminal voltage, with rated load with unity power
factor. Find the excitation voltage, the field current, and the voltage
regulation.
For the machine in Problem 11-1, find the voltage regulation for power
factor of 0.8 lagging.
For the machine in Problem 11-1, find the voltage regulation for a
power factor of 0.8 leading.
A 60-Hz, three-phase synchronous generator is rated 1000 v per phase
and 200 amp per phase. The synchronous reactance is 3.89 Q per
phase. The open-circuit characteristic is approximated by the follow-
ing:

_ 2400 I 9E

orl, O T 2400-E

where E is the no-load volts per phase and Iy is the field current in
amperes. For operation with rated terminal voltage and rated current
with power factor of 0.85 lagging, find the excitation voltage, the
field current, and the voltage regulation.

For the machine in Problem 11-4, find the voltage regulation for power
factor of 0.85 leading.

The machine in Problem 11-4 is operated with a field current of 10.4
amp. The Y-connected load impedance is 4 +; 3  per phase. Find
the load current and the terminal voltage.
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11-7.

11-8.

11-9.

11-10.

11-11.

11-12.

11-13.

11-14.
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The machine in Problem 11-4 is operated with a field current of 9.6
amp. The Y-connected load impedance is 5.2 +72.8 Q per phase.
Find the load current and the terminal voltage.

A three-phase, Y-connected alternator has a cylindrical rotor. With
an open circuit at the stator terminals, a d-c field current of 20 amp
makes the terminal voltage to be 254 v per phase. Next, a Y-connected,
pure resistance load with 1.1 Q per phase is connected to the stator
terminals. Now, it takes 26 amp of d-c field current to make the ter-
minal voltage to be 254 v per phase. Find the synchronous reactance
for this machine.

A three-phase alternator has synchronous reactance of 1 §2 per phase.
The open-circuit characteristic is approximated by

800 I; 4E
= r -
a+1; © T 800-E

where E is the open circuit volts per phase and I is the d-c field current
in amperes. The terminals of this machine are tied to an infinite bus
of 500 v per phase. The prime mover is adjusted to deliver 600 kw.
The field current is adjusted to make the armature current to be 470
amp with lagging power factor. Find the field current.

The machine in Problem 11-9 has its field current adjusted to make
the torque angle to be 31 electrical degrees. Find the field current and
the armature current.

The machine in Problem 11-9 has its field current adjusted to make
the power factor be 0.9 leading. Find the field current and the arma-
ture current.

The machine in Problem 11-9 is operated as a synchronous reactor
by having its prime mover adjusted to deliver zero power, while the
terminals are still connected to the infinite bus with 500 v per phase.
Find the corresponding armature current for the following values of
field current: 2, 4, 6, 6.67, 8, 10, and 12 amp. Draw a graph of the
rms magnitude of armature current versus the field current.

A three-phase, Y-connected synchronous generator is operated as a
synchronous reactor with its terminals tied to an infinite bus of
254 v per phase. With the field current set at 1.6 amp, the armature
current is 32 amp. With the field current set at 1.15 amp, the arma-
ture current is approximately zero. (a) Find the synchronous reactance.
(b) Find the armature current for a field current of 0.93 amp.

Two four-pole, three-phase alternators operate in parallel to supply
a common load of 105 kw and 70 kvar. (lagging). The speed-versus-
load characteristics of the prime movers can be approximated by straight
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11-18.
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lines. Machine A runs at 1830 rpm at no-load and at 1770 rpm for
60 kw. Machine B runs at 1815 rpm at no-load and at 1785 rpm at
60 kw. (a) Find the speed at which the system runs. (b) Find the
average power delivered by each generator. (c) The field currents are
adjusted so that the terminal voltage is rated value and so that the
power factor of each machine is the same as the load power factor.
Find the reactive power of each machine.

Two four-pole, three-phase alternators operate in parallel to supply
a common load of 75 kw and 40 kvar (lagging). The speed-versus-
load characteristic of the prime movers can be approximated by straight
lines. Machine 4 runs at 1815 rpm at no-load and at 1785 rpm at
60 kw. Machine B runs at 1800 rpm at no-load and at 1785 rpm at
60 kw. (a) Find the speed at which this system runs. (b) Find the
average power delivered by each generator. (c) The field currents
are adjusted so that the terminal voltage is rated value and so that
the armature currents of both machines have equal value. Find the
power factor of each machine.

The machine in Problem 11-1 has armature resistance of 0.022 § per
phase. The field winding resistance is 0.81 Q. The rotational losses
amount to 32 kw. The machine is operated at rated load with power
factor of 0.8 lagging (as in Problem 11-2). Find the efficiency.

A three-phase, Y-connected synchronous generator is operated with
its armature terminals connected to an infinite bus having rated voltage.
Its synchronous reactance is 1 per unit. The excitation voltage is 1.6
per unit. Find the torque angle for operation with rated current. Find
the power factor.

The machine of Problem 11-17 delivers energy through a transmission
line to an infinite bus having rated voltage. The inductive reactance
per phase of the transmission line is 0.4 per unit, based on the generator
rating. The excitation voltage is 1.6 per unit. The armature current
is rated value. Find the terminal voltage of the generator. Find the
power factor at the terminals of the generator.
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Synchronous Machines
with Salient Poles

12-1 DEVICES AND MODELS

The study of engineering devices begins almost invariably with simplifying as-
sumptions. After this method has led to results, the effects of the assumptions
upon the results can be investigated, both in theory and empirically. In some
cases, such investigations reveal no significant difference between the simplified
model and the actual device. In other cases, the simplifications may have led to
results so worthless that a new beginning has to be made, with fewer, or differ-
ent, such assumptions. Many more cases are found to lie between these extremes.

In describing the synchronous machine and its operation in the last several
chapters, a number of simplifying assumptions were made. In particular, the
introduction of the concept of synchronous reactance had to be based on an
assumption of linearity, or, in more specific terms, constant saturation. This
assumption holds fairly well over a wide range of operating conditions, especially
when the machine is connected to an infinite bus, or otherwise as long as its
terminal voltage is held to substantially constant values, which is normally the
case. The one exception encountered in these pages, the open-circuit operation
of a generator, illustrates what difficulties may be expected to arise when the
assumption is no longer valid.

The chosen model of the synchronous machine is also based on the assump-
tion that all mmf waves and flux distributions are sinusoidal; in other words,
that only their space fundamentals need to be considered. This is a different
case inasmuch as the methods used for the analysis of the model, regardless of
how closely the model approximates the device, can always be expanded to take
the space harmonics into consideration. Since this adds but little to a basic
understanding of the synchronous machine, it is left to more advanced studies.

Another simplification was made in Section 9-4 where the effect of salient
poles was put aside. The consideration of this effect does add something signifi-
cant to the analysis of machines equipped with salient poles. Furthermore, it
leads, rather surprisingly, to new methods useful even in the study of machines
with cylindrical rotors.

254
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12-2 DIRECT AXIS AND QUADRATURE AXIS

A few diagrams may be helpful to clarify the issue. Figure 12-1 is a sketch of a
synchronous machine whose rotor has two salient poles. Only one stator coil is
drawn, just to indicate the axis of the stationary mmf wave of the reference
phase (2) of the armature current. The positive direction of rotation is marked
(counterclockwise), and so are the positive direction of the field current and the
corresponding polarities (n for north and s for south) of the rotor poles. Finally,
the choice of positive armature circuit direction (indicated by cross and dot) is
such that, at the instant of the diagram, the excitation voltage induced in phase a
is positive if the field current and the direction of rotation are positive. (Check
this with the directional rule stated in Section 7-1, remembering that it refers to
the direction of motion of the armature conductor relative to the field, which is
opposite to the rotor motion.)

This diagram is, in effect, reproduced in Fig. 12-2a where it is developed for
greater convenience. Then, in Fig. 12-2b, there is a snapshot of the space funda-
mental of the rotor mmf wave, for the instant of the two previous diagrams. As
the rotor moves, this wave always moves with it, with its peaks always facing
the pole centers. The axis of this wave is called the direct axis, and it is marked
d - d in both Figs. 12-1 and 12-2a.

By contrast, the location of the axis of the rotating stator mmf wave depends
on the phase angle of the armature current. Suppose, for instance, that this
current is in phase with the excitation voltage. In this case, at the instant
depicted by the diagrams, both the excitation voltage and the armature current
have positive maximum values, and the stator mmf wave is located 90 electrical

<

q
Fig. 12-1. Synchronous machine with two salient poles.
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Fig. 12-2. Developed view: (a) stator and rotor; (b) rotor mmf wave.

/

degrees to the left (in terms of Fig. 12-2b) of the rotor mmf wave. This is true
not only for the stationary mmf wave of the current in the reference phase, but
also for the rotating mmf wave produced by the three armature currents to-
gether, in accordance with paragraph (c) (the third of four observations about
rotating armature mmf waves) near the end of Section 8-8. So the axis of the
stator mmf wave is midway between two adjacent poles, in a location known as
the quadrature axis because it is in space quadrature with (i.e., 90 electrical
degrees away from) the direct axis. See the g - ¢ markings in Figs. 12-1 and
12-2a. Both the direct and the quadrature axis are thus defined in relation to
the rotor, and they both rotate at all times at the same speed as the rotor.

It is also possible for the axis of the stator mmf wave to coincide with the di-
rect axis. This occurs when the armature current is 90° out of phase with the
excitation voltage. In this case, the armature conductors of Fig. 12-2 again have
positive maximum values of excitation voltage, but the armature current is zero
at that instant. Thus, the rotating armature mmf wave is a quarter of a wave
length (ie., 90 electrical degrees) away from where it was in the previous case,
which puts its axis right into the direct axis.

To recapitulate: the axis of the armature mmf wave coincides with the quadra-
ture axis when I, is in phase with Ey, and it coincides with the direct axis when
I, is 90° out of phase with £, r. These are two special cases; with any other phase
relationship between /, and E, the axis of the armature mmf wave is somewhere
in between the direct and the quadrature axis.
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Fig. 12-3. Stator mmf wave in quadrature axis: (a) stator and rotor; (b) stator mmf wave
and flux distribution.

12-3 SYNCHRONOUS REACTANCES FOR SALIENT-POLE MACHINES

The relation between an mmf wave and the flux it produces depends on the mag-
netic circuit. In the case of a cylindrical rotor, an mmf wave of given magnitude
produces the same amount of flux no matter whether it is in the direct or in the
quadrature axis, or anywhere in between, because it faces the same magnetic cir-
cuit everywhere. This is not so if the rotor has salient poles.

Figures 12-3 and 12-4 represent the two extreme cases discussed in the previ-

@

)

Fig. 12-4. Stator mmf wave in direct axis: (a) stator and rotor; (b) stator mmf wave and
flux distribution.



258 ELECTRIC POWER SYSTEM COMPONENTS

ous section. Both figures contain sketches of the stator and rotor similar to Fig.
12-2a, but this time they are meant to be snapshots taken at the instant when
the armature current (in the reference phase) has its positive maximum value.
If, at that instant, the pole centers are facing the armature conductors, as they
do in Fig. 12-3, then I, and Ef are in phase with each other, and the armature
mmf wave is in the quadrature axis. By contrast, Fig. 12-4 represents the other
extreme, with the armature mmf wave in the direct axis. In either figure, part b
is a snapshot of the armature mmf wave (the broken line) and a reasonable ap-
proximation of the corresponding flux distribution.

These curves are obtained by neglecting the reluctance of the iron part of the
magnetic circuit (in other words, by assuming an ideal core material). Thus, the
mmf wave is taken to be

5(6) ~gH(6) =<~ B(6) (12-1)
Mo

similar to Eq. 8-2 but not restricted to a single coil. This way, the flux distribu-
tion is proportional to the mmf wave and inversely proportional to the length g
of the air gap. If the curves had somehow been drawn accurately, without any
approximation, they would be slightly distorted. They would also display some
effect of fringing near the pole edges, but their main features would be the same.
The essential observation can be made from the diagrams, without any calcula-
tion: the flux per pole (which is proportional to the shaded area) is decidedly
larger when the axis of the mmf wave coincides with the direct axis than when
it coincides with the quadrature axis. In other words: an mmf wave in the direct
axis produces more flux than in the quadrature axis.

The reader is now referred to Section 9-6 in which the idea of superposition
was applied to the effects of the two rotating mmf waves produced by the arma-
ture currents and the field current. Specifically, a voltage E,, induced by the ro-
tating armature flux ¢, appears in Fig. 9-9 and is expressed in Eq. 9-12 as pro-
portional to the armature current and lagging it by 90°. If this concept is to be
used for a salient-pole machine, the coefficient X, (called the armature reaction
reactance) must be given a different value depending on the location of the ar-
mature mmf wave relative to the rotor poles. Considering the two extreme cases
depicted in Figs. 12-3 and 12-4: when the armature mmf wave is in the quadra-
ture axis, this reactance has a value X,,, which is smaller than the value X, that
it takes on for an armature mmf wave in the direct axis.

What is to be done if the axis of the armature mmf wave does not coincide
with either the direct or the quadrature axis? Is it necessary to use a different
value of armature reaction reactance for every angular position? The French en-
gineer A. Blondel was the first to suggest an idea that turned out to be extraordi-
narily fruitful, even beyond these immediate questions: let the armature mmf
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wave be decomposed into two component waves, one in the direct axis and one
in the quadrature axis; as a result, only two values of armature reaction reac-
tance, namely X,4 and X, have to be used.

The way to accomplish this follows from the results obtained in the previous
section. It is the angle between the armature current /, and the excitation volt-
age E that determines the location of the axis of the armature mmf wave rela-
tive to the direct and quadrature axis. Consequently,each of the three armature
currents is split into two components, one in phase with the excitation voltage
and one in phase quadrature to it. This is illustrated in Fig. 12-5, which is drawn
(as an arbitrary example) for an overexcited generator, similar to that of Fig.
10-2b.

Using the symbol y for the phase difference between 7, and Ef, the phasor dia-
gram of Fig. 12-5 shows the magnitude relations

I, =1, cos Y (12-2)
and
I;=1,siny (12-3)

The subscripts given to these component currents indicate the location of their
mmf waves. The current I, in the reference phase, together with its counter-
parts in the other two phases, produces a rotating mmf wave called 4, whose
axis coincides with the quadrature axis. Similarly, /; and its two counterparts
produce a rotating mmf wave called A; whose axis coincides with the direct axis.

The sign of 7; (plus or minus) depends on the arbitrary definition of the angle
¥ (as the angle by which Ef leads /,, or vice versa). Also, this same definition
determines whether y is the sum or the difference of the torque angle § and the

Ey

Iy

Fig. 12-5. Current components.
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power factor angle §. At any rate, for the phasors representing the component
currents,

L+l =1, (12-4)

The synchronous machine may thus be considered to have three, not two, sep-
arate mmf waves, all rotating in the same direction and at the same speed. In-
stead of combining them to a resultant mmf wave to which the corresponding
flux would depend on the angular location of its axis, superposition is once again
called to the rescue. Each mmf wave is thought of as producing its own flux,
and each flux as inducing its own voltage. In other words, the thought process
that led from Fig. 9-8 to Fig. 9-9 is repeated, this time with three mmf waves in-
stead of two. The result is illustrated in Fig. 12-6. The total induced voltage is
the phasor sum

E=E +E, +E4 (125)

The voltages are related to the component currents in a way similar to that ex-
pressed in Eq. 9-12, except that each current is associated to its own reactance.
Thus

E=Ef‘]Xanq _]Xadld (12-6)

Now the imperfections of the armature windings are introduced, by substituting
Eq. 9-10 into Eq. 12-6. (These imperfections, resistance and leakage reactance,
are independent of the angle {.) Solving for the excitation voltage

Ef=V+RaIa +leIa +fXanq +andId (12'7)

Next, substitute Eq. 12-4 into Eq. 12-7, collect the terms with the same current
component, and neglect the resistance term, as was done throughout most of the
preceding chapters.

Ep=V+j(Xp+ Xog)lg +7(Xi + Xpg)ly (12-8)

Finally, the leakage reactance may be combined with each of the two armature
reaction reactances (similar to Eq. 9-15), resulting in two synchronous reac-
tances, one associated with the direct axis and one with the quadrature axis

X1+ Xog = Xq (129)
1, Aq —— —>Eq
Armatureg A g/ +
1. Ay — ¢, —fy E
Field 1 F oy —Ef

Fig. 12-6. Superposition for salient-pole machine.
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and
X1+Xad =Xd (12-10)
This leads to the final form of the voltage equation for salient-pole machines
E=V+jX,1; +jX5ly (12-11)

This whole derivation parallels that of Eq. 9-17 in the ninth chapter, and it is
based on the same choice of positive current direction, which is the one used in
Chapters 9 and 11 for generator operation. If the current arrow is reversed for
motor operation (as it is in Chapter 10), the equation becomes

E =V -jX,1, - Xl (12-12)

12-4 PHASOR DIAGRAMS

Equations 12-11 and 12-12, just derived above, are modified, or extended, ver-
sions of Egs. 11-1 and 10-1, respectively. They are modified to account for the ef-
fect of salient poles. If these equations (12-11 or 12-12) are applied to cylindrical-
rotor machines, for which X, = X5 = X, they revert to their simpler original
form (with the aid of Eq. 12-4). So it ought to be possible to illustrate these
equations, for any operating condition of a salient-pole machine, by phasor dia-
grams, just as Eq. 10-1 was illustrated in Fig. 10-2, and Eq. 11-1 in Fig. 11-2.

A first attempt to do this runs into a peculiar difficulty. Starting out with a
given operating condition, the known variables are the phasors representing the
terminal voltage ¥ and the armature current I,. But the component currents I,
and I; depend on the phase angle of the excitation voltage Ef, which is yet to
be obtained. It is possible to overcome this difficulty by trial and error: begin
by assuming a plausible direction for the phasor of £y, and improve it in a series
of iterative drawings or calculations until the result is sufficiently close to the as-
sumption. But there is a simple and elegant way to make such a procedure
unnecessary.

Substituting for I, (from Eq. 12-4) changes Eq. 12-11 into

Ef=V+iXgly+iXq (I, - 1) (12-13)
Now collect the terms with the same current phasor
Er=V+iX, 1, +j(Xq- Xy Iy (12-14)

In this equation, the last term is seen to lead the current component Iz by 90°.
But since this component, by its definition, is 90° out of phase with E 7, that last
term of Eq. 12-14 is in phase with E. Thus, the sum of the first two terms on
the right side of the equation must also be in phase with E;. This sum can be
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Fig. 12-7. Finding the direction of £¢.

calculated or drawn without prior knowledge of the angle of Ey. Figure 12-7
demonstrates this method, for the (arbitrarily chosen) example of a generator
delivering lagging current. Once the direction of Ef, and thereby angle y/, has
been determined, the component currents can be found from Egs. 122 and
12-3, and then the excitation voltage can be found, either from Eq. 12-11 or
from Eq. 12-14, either analytically or graphically. See example 12-1.

For a graphical construction of the phasor diagram, it is not even necessary to
find the component currents /, and I;. Figure 12-8 is drawn for the same ma-
chine as Fig. 12-7, and for the same operating condition. The line ab represents
the phasor jX, 1,, and its end point b determines the direction of r and thereby

Fig. 12-8. Graphical procedure.
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the angles § and Y. Now this line is continued to point ¢, with the distance ac =
Xaly, or be = (Xg - Xg) I,. Then a line cd is drawn perpendicular to Ey, form-
ing the angle ¥ at point ¢, which makes bd = (X4 - X) I, sin Y = (X4 - X,) I4
(by Eq. 12-3). This completes the diagram, point d being the end point of the
phasor of Ef, according to Eq. 12-14.

The reader should repeat this procedure for a generator delivering leading cur-
rent, and also for motor operation (both leading and lagging). If such diagrams
are drawn for the same amount of power (same values of V and I, cos 9), they
show, for one thing, that the rules for over- and underexcitation, as they were
found for motors in Chapter 10 and for generators in Chapter 11, are valid for
salient-pole machines.

The diagrams also illustrate the effect of salient poles on the magnitude and
angle of the field excitation voltage. Let Fig. 12-8 be used as an example. If the
machine had a cylindrical rotor rather than salient poles, its synchronous reac-
tance would have the single value X, = X, corresponding to a uniform air gap.
The excitation voltage, as determined by Eq. 11-1, would appear in the phasor
diagram as a straight line connecting the origin to point ¢. The actual excitation
voltage for the salient-pole machine has just slightly less magnitude but a signifi-
cantly smaller angle. So the salient poles make the machine “stiffer” (the torque
angle & changes less for a given load change). It may also be expected that they
improve the steady-state and transient stability. This latter conclusion, however,
can be confirmed only after the relation between the electromagnetic torque and
the angle § has been established for salient-pole machines.

125 TORQUE AND TORQUE ANGLE

A torque equation will be derived, as was done in Chapter 10 for cylindrical-
rotor machines, from the power that is converted from mechanical into electrical
form or vice versa. This power differs from the power at the armature terminals
only by the power loss in the armature resistance (see Fig. 11-10), which is ne-
glected in this whole chapter as it was in most of the two preceding ones. Thus

P 3VI,cosf
w.!‘

T= (12-15)

Wy

m m

As an aid to the further derivation, the phasor diagram of Figs. 12-7 and 12-8
is redrawn once more in Fig. 12.9, with the component currents I, and /; added.
As this diagram shows, I, =1, /6 and I = I, /8 - 9Q°. Therefore, equating the
real parts of both sides of the complex equation, Eq. 12-4, leads to

I, cos § =1, cos & + Iy sin & (12-16)
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Fig. 12-9. Diagram for torque calculation.

which can be substituted into the previous equation

T= 3V
w

(I cos & + I sin 8) (12-17)
Sm

This substitution introduces the angle § into the torque equation, but it does so
at the cost of also introducing the component currents. To remove them from
the equation, another line is drawn in Fig. 12-9, this one from point « in the di-
rection perpendicular to that of the phasor of Ef, reaching it at point e. The sig-
nificance of this point lies in the fact that the polygon Oaed describes the phasor
relation of Eq. 12-11, just as the polygon Oabd describes Eq. 12-14. Thus

ae=Xq1, (12-18)
and
ed=XdId (12-19)

Solve these two equations for the component currents, with a look at the trian-
gle Oae, as follows:

(12-20)
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and
p _ffi_..Ef_ V cos & 1221
=y X, (12-21)

These expressions for /, and I are substituted into Eq. 12-17, with the result

v IV . Ef- Vcosd
T= —sind cos§ + ———sin § (12-22)
wsm Xq Xd
which may be rearranged to read
V(11 3VE
T=—(——~ —>sin5 cos & + —2 sin § (12-23)
ws,, \Xqg Xa X4

Before this result is discussed, it should be pointed out that its derivation was
based on the phasor diagram of Fig. 12-9, which describes a generator delivering
lagging current. Could a diagram drawn for a different operating condition lead
to a different result? To dispel such doubts, consider the case of a generator de-
livering leading current (or a motor drawing lagging current) at a phase angle 6
exceeding the torque angle in magnitude. In such a case, the current phasor Iy
lies in the second (or third) quadrant; thus, its real part is negative, and the plus
signs in Egs. 12-16 and 12-17 must be changed into minus signs. But in the same
cases, point d lies to the left, not the right, of point e; thus, de = V cos 8 - Ef,
which is the negative of what was used in Eq. 12-21. The two minus signs cancel
each other, and the result, Eq. 12-22 or 12-23, remains unchanged.

In discussing this result, the reader is reminded that the aim of this section was
to establish a torque equation similar to Eq. 10-8 but valid for a salient-pole ma-
chine also. In that sense, the striking feature of Eq. 12-23 is that it expresses the
effect of salient poles in terms of the difference between X, and X in the first
term. If this equation is applied to a cylindrical-rotor machine, where X, = X4 =
X,, it reverts back to Eq. 10-8.

It may be further noticed that the first term in Eq. 1223 does not contain the
field excitation at all. So this is a torque that exists even in the absence of any
field excitation, due only to the different reluctances in the direct and quadra-
ture axis. It is, therefore, logical to name the two terms of Eq. 12-23 the reluc-
tance torque and the excitation torque

T=T,+Tf (12-24)
The possibility of obtaining torques in singly excited devices, based on differ-

ences of reluctances, was already discussed in Chapters 7 and 8. The only appli-
cation of this idea that produces a torque that is continuous in one direction is
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the synchronous machine. To study this torque further, its expression in Eq.
12-23 is now changed to

3V X, - X,
T, =29 24y 25 (1225)
ws, 2XaX,

(using the familiar trigonometric identity sin 28 =2 sin § cos §). In this form,
the expression shows more clearly that it is the difference between X4 and X,
that is responsible for the production of this torque.

The appearance of the angle 24 is also significant, and can be understood by
examining a diagram similar to that of Fig. 12-3 or Fig. 12-4. In the absence of
any field excitation, the salient poles on the rotor are only poles of induced mag-
netism, without any fixed polarities. Whichever rotor pole happens to face the
north pole of the stator flux becomes an induced south pole, and vice versa. The
reluctance torque must be a periodic function of 28, not of §, because a motion
of the rotor of 180 electric degrees relative to the rotating armature flux would,
in the absence of a field current, lead to the same, not the opposite condition.

The presence of a reluctance torque changes the relation between torque and
torque angle. In place of the pure sinusoidal relation of Eq. 10-8 and Fig. 10-7,
which is valid for the machine with a cylindrical rotor, there is now a sum of two
functions of §, given by Eq. 12-23 and depicted in Fig. 12-10. A look at this
diagram confirms that the salient poles enable the machine to change its torque
without as great a change of the angle § as it would need without them. This is
the greater “stiffness™ of the machine, mentioned at the end of the previous sec-
tion, where it was deduced from the phasor diagram. Another thing Fig. 12-10

T

AN 5

Fig. 12-10. Torque versus torque angle.
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makes clear is that, due to the salient poles, the maximum torque (which is the
steady-state stability limit) is increased and that it occurs at a torque angle of
less than 90°. Incidentally, the figure is drawn for both positive and negative
values of the angle &, and the choice of which side represents motor operation
and which generator operation can be made arbitrarily.

12-6 RELUCTANCE MOTORS

A synchronous machine with salient poles does not need any field excitation in
order to work. Nevertheless, most synchronous machines are equipped with
field windings even though these windings and the connections to their auxiliary
sources add considerably to the cost of the machines. The excitation torque is
usually a multiple (typically, something like three times) of the reluctance torque,
so that a machine without field excitation would have a very low power rat-
ing for its size. In addition, synchronous machines without field excitation must
inevitably operate at very low power factors.

To verify that last statement, set the field excitation voltage in Eq. 12-12 (that
is the equation for motor operation) equal to zero. It may then be written

V=X, 1, +iX41y (12-26)

A phasor diagram illustrating this equation is drawn in Fig. 12-11. It must be
understood that & is a meaningful angle even if there is no Ey. For one thing, the
existence of & can be understood by assuming the field excitation voltage to be
very small, i.e., small enough to be negligible compared to the other voltages, but
not zero so that § can be defined as usual as the phase angle between V and Ej.
Or, preferably, let the angle { be defined first as the space angle between the
axis of the stator mmf wave and the quadrature axis, and then use the relation
6 =60 - . The large value of 8, corresponding to a very low power factor cos @,
is by no means exaggerated in the diagram. Rather, it is typical for a synchro-

Fig. 12-11. Phasor diagram of reluctance motor.
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nous motor without field excitation. Nor should this come as a surprise if it is
remembered that an underexcited motor draws lagging current. Just let the field
excitation be gradually reduced toward zero (for a given load) and watch the
current become more and more lagging.

Apart from such drawbacks, if a synchronous machine is to operate as a gener-
ator without field excitation (a reluctance generator), there has to be at least one
other generator (with field excitation) connected to the same load, and this
other generator needs additional field excitation in order to deliver the lagging
current needed to compensate for the leading current delivered by the reluctance
generator. All in all, reluctance generators may be dismissed as having negligible
practical importance.

This is not so for the reluctance motor. Its typical use is for electric clocks or
other timing devices. For such purposes, the amount of power needed is so
small that a low power factor and a low efficiency are of no practical conse-
quence, whereas simplicity, ruggedness, and low cost are prime considerations.

12-7 INDUCTANCES

It was pointed out at the end of Chapter 11 that a mathematical study of a syn-
chronous machine in an electrical transient condition requires that the concept
of the rotating magnetic field, useful as it is for any study of steady-state (and
quasi-steady-state) operation, be abandoned. In its place, a system of differen-
tial equations must be set up, one equation for each circuit, with their self- and
mutual inductances and resistances. For the purpose of this introductory dis-
cussion, damper windings will be left out of consideration, which still leaves
three armature circuits and one field circuit.

The use of inductances always implies an assumption of constant saturation.
So the differential equations will be considered as linear, although they do not
have constant coefficients because some of the inductances are time-varying.
Such a possibility was already encountered in Section 7-8, and it will now be in-
vestigated for the specific case of the three-phase synchronous machine.

Of all the inductances involved, the simplest is the self-inductance Ly of the
field winding. It is constant because the stator is cylindrical and offers the same
reluctance to the rotor mmf wave no matter what its position. For the same rea-
son, the self-inductances of the three armature circuits are constant if the rotor
is cylindrical. In the case of a salient-pole rotor, however, each of these self-
inductances has a maximum value at the instant when the mmf wave of its phase
is in the direct axis, and a minimum value when it is in the quadrature axis.

To obtain mathematical expressions for these time-varying inductances, we be-
gin by introducing the symbol ¢ for the space angle around the stator circumfer-
ence, in electrical units. (This takes the place of the symbol 8 that was used in
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Chapters 7 and 8 for this angle.) Let this angle have its zero value at the axis of
phase a, and let time be zero at the instant when the direct axis is at ¢ = 0. This
means that the direct axis is always located at an angular position w,t?, and, thus,
the self-inductance of phase a of the armature winding has the form

Ly=Ly +L, cos 2w;t (12:27)

where L; > L,, and the higher harmonics are neglected. The self-inductances of
the other two phases are similar, but they reach their maximum values one-third
of a period later and earlier, respectively. Thus

Ly =L, + L, cos 2(wst - 120°) (12-28)
and

Lo.=L, + L, cos 2(wgt +120°)
(12-29)

The mutual inductances between the field winding and each of the armature
windings are time-varying, regardless of whether there are salient poles or not.
They are zero for whichever phase has its mmf wave in the quadrature axis, and
their signs alternate with the polarities of the rotor poles

Myr=M, cos wgt (12-30)

My =M, cos (wst - 120°) (1231)
and

Mp=M; cos (wgt +120°) (12-32)

Lastly, there are the mutual inductances between phases of the armature wind-
ing, and they are a little trickier. Figure 12-12 presents a developed view of the
stator surface, showing the location of the conductors of phases ¢ and b, with
their positive directions indicated by dots and crosses. It can be seen that these
mutual inductances must be assigned negative values because those lines of flux
that link both phases ¢ and b link them in opposite directions relative to their
dots and crosses. It will also be noticed that these lines are centered around the
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Fig. 12-12. Location of armature conductors, phases a and b.
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axis of symmetry of these two phases. (See the dash-dot line in the figure.)
Therefore, if the rotor has salient poles, the mutual inductance M, has its maxi-
mum value at the instant when this axis of symmetry coincides with the direct
axis. All of which leads to the expressions

My, =-M, - M5 cos 2(wgt + 30°) (12-33)
My, =My - My cos 2(w,? - 90°) (12-34)
M,y =-M, - My cos 2(w,t + 150°) (12-35)

For the case of a cylindrical rotor, simply set M3 =0. Notice that all time
variations due to salient poles are periodic functions of 2w, whereas those that
involve the field winding are periodic functions of wyt.

12-8 TRANSFORMATION OF VARIABLES

The differential equations mentioned in the previous section are the voltage
equations of the four circuits. Their basic form is

dX
=Ri+— 12-3
v=Ri+— (12-36)

where X represents the flux linkages, and the variables are further identified by
subscripts. For instance, for the circuit of phase a, the subscript 4 is added to
the symbols of current, voltage, and flux linkages. Then the inductances are in-
troduced (as they were in Eqs. 7-32 and 7-33, which are a system of two equa-
tions for two magnetically coupled circuits), for instance in

>\a =Laia +Mabib +Mcaic +Mafif (12-37)
Next, Eq. 12-37 is substituted into Eq. 12-36 (for phase a):
dL, di, . dMgy N dip,

ba =Rala*ia 5"+ La "y dt b ar
. dM,, di; . dMaf dif
ti, —+M, —+ + — -
' Tar ag T g My, (12:38)

This, in turn, requires substitution of Eqs. 12-27, 12-30, 12-33 and 12-35 for the
inductances. The whole procedure is to be repeated for the other three circuits.
In these lengthy equations, the reader can recognize the transformer voltages
and the motional voltages. Beyond that, the equations are far too unwieldy for
solution by even sophisticated computing equipment. The way to make them
manageable is a remarkable transformation that was developed in the late 1920s
(long before the advent of digital computers) and for which the names of R. H.
Park, R. E. Doherty, and C. A. Nickle are remembered. The idea is related to
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the salient-pole theory discussed in this chapter, but is is applicable to any syn-
chronous machine, whether it has salient poles or not.

The actual procedure is too lengthy to be given here,and what follows is merely
a sketch of the basic principle. The three armature currents i,, ip, and i, are re-
placed by three fictitious currents with the symbols iy, i, and iy. Of these, iy
and iy can be viewed as the currents in two fictitious rotating windings centered
around the direct and the quadrature axis, respectively. They are given such
values that, in a balanced condition, when i, + iy + i, = 0, they produce the same
flux, at any instant, as the actual phase currents in the armature. The relations
between these two currents and their fluxes (i.e., their inductances) are not time-
varying, and there is no magnetic coupling between i; on one hand and iy and
ir on the other. The third fictitious current i is needed to make the transfor-
mation possible when the sum of the three phase currents is not zero.

Similar transformations must be made in replacing the three armature terminal
voltages v,, Up, and v, by a set of fictitious voltages named vy, v, and ve. In
terms of all these six new variables and two original ones (ir and vy), the trans-
formed equations can be written in a form that contains fewer terms, and in which
all coefficients are constant. In addition, the actual steady-state and transient in-
ductances Ly, Lq, Lg, and Ly can be obtained from these coefficients. (Also the
subtransient inductances, if the damper windings are included in the system of
equations.) For the whole procedure, involving the transformation of the vari-
ables and the necessary manipulation of the equations, the reader is referred to
the advanced literature on that subject.*

12-9 EXAMPLES
Example 12-1 (Section 12-4)

A 1500 kva, Y-connected, 2300-v (line to line), three-phase, salient-pole synchro-
nous generator has reactances Xz = 1.95 and X, = 1.40 £ per phase. All losses
may be neglected. Find the excitation voltage for operation at rated kva and
power factor of 0.85 lagging.

Solution

Voltage per phase is 2300//3 =1328 v. Rated current is 1,500,000/(3 X 1328) =
377 amp. Use the terminal voltage as the reference

V=1328/0° =1328+j0v
I, =377 /-31.8° =320 -7 199 amp

*E.g., E. W. Kimbark, Power System Stability, vol. 3, John Wiley & Sons, 1956.
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We propose to find E; from Eq. 12-14. Let E' =V +jX,1,. E'has the same di-
rection as Ey on a phasor diagram.

E'=V+jX,1,=(1328 +70) +/(1.40) (320 - j 199)
= 1607 +j 448 = 1668 /15.6° v
The phase difference between E’ and I, is angle ¢
Y =15.6"-(-31.8°)=474°
Use Eq. 12-3 to find I
Iy =1, sin Y =377 sin 47.4° = 278 amp
Xg-X)I;=(195-140)278 =153 v
Since Ef, E',andj(X, - X, ¢) Lg are in phase, it is only necessary to add magnitudes
Ef=E'+(Xg- Xg)1;=1668 +153=1821v

Example 12-2 (Section 12-4)

The reactances Xz and X, of a salient-pole synchronous motor are 1.00 and
0.60 per unit, respectively. The armature resistance is negligible. Find the exci-
tation voltage when the motor is operating at rated terminal voltage, rated kva,
and with power factor of 0.8 leading.

Solution

The positive direction of armature current for motor operation is chosen as in
Fig. 10-1. Use armature current as the reference

I,=1/0°=1+j0pu
V=1/-369°=08-70.6pu

Equation 12-12 is written for motor operation. We want to solve for E using an
equation similar to Eq. 12-14. For a motor it becomes

E =V- XL - j(Xg- X) 1y
First, we must find the angle of £
E'=V-jX,1,=(08-70.6)-7(0.6) (1 +j0)
=08-712=144/563° pu
The angle between Eyand I, is ¢ =-56.3°. Use Eq. 12-3 to find I,
Iy =1, sin ¢ =1 sin (-56.3°) = -0.832 pu
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ba=Xan b
ca=Xy4l,
db=(X3— X)) Iy E

c
Fig. E-12-2. Phasor diagram of an overexcited salient-pole synchronous motor.

Interpret the minus sign to show that I leads E; by 90°. Since Eg, E', and
-j(X4 - X4) I are in phase, it is only necessary to combine magnitudes

Ef=E'+(Xq-Xq)13=144+033=177pu
Figure E-12-2 is the phasor diagram that illustrates the quantities in this example.

12-10 PROBLEMS

12-1. For the machine in Example 12-1, find the excitation voltage for opera-
tion at rated kva and power factor of 0.7 lagging.

12-2. A three-phase salient-pole synchronous generator is operated with termi-
nal voltage of 254 v per phase. The excitation voltage is 410 v per phase.
The armature current is 20 amp. The power factor angle is 30 degrees. The
torque angle & is 20 electrical degrees. Find the reactances Xz and X, for
this machine.

12-3. A three-phase salient-pole synchronous generator is connected to an infi-
nite bus of rated voltage and frequency. The reactances are Xz = 1.2 per
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12-4.

12-5.

12-6.
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unit and X, =0.7 per unit. The generator output power to the bus is
0.55 per unit. The torque angle § is 30 electrical degrees. Find the line
current in per unit.

The salient-pole synchronous motor in Example 12-2 has its field current
reduced until the power factor has become 0.6 lagging. Find the excita-
tion voltage for this condition.

The salient-pole synchronous motor in Example 12-2 has its excitation ad-
justed to 1.00 per unit. When operated at no-load, the armature current is
found to be negligible. With this field current, the mechanical load is in-
creased until the motor loses synchronism. Find the pull-out power in per
unit. Find the current in per-unit at pull-out.

A salient-pole synchronous motor is operating with rated terminal voltage.
If the field current is zero, the motor can develop maximum torque of 0.3
per unit. If it runs at no-load and with the field current set to make the
excitation voltage be 1.7 per unit, the armature current is 0.8 per unit.
Find the reactances Xy and X, in per-unit.



13

Three-Phase Induction
Machines

13-1 HISTORICAL BACKGROUND

It may be difficult to imagine nowadays that in the early years of electric power
engineering, there was a serious controversy about the relative merits of direct-
current and alternating-current power systems. The advocates of a-c systems,
lead by innovators like Tesla,* were opposed by no less a giant of the engineer-
ing world than Edison,} who had pioneered the first (d-c) system. Even though
the advantages of high-voltage power transmission and the need for transformers
were known and appreciated, it took another breakthrough, the invention of
the induction motor (attributed to Tesla) to turn the tide in favor of a-c.

Induction motors are simpler and cheaper to build and operate than either syn-
chronous motors or d-c motors. It is true that each of these three types of elec-
tric motors still has, even today, its field of application where it is preferred to
the others; but induction motors are more frequently used by far than others.
On the other hand, generator operation of induction machines is quite rare, for
reasons that will be explained in due course.

This and the following chapter deal only with three-phase induction machines,
just as the previous four chapters were limited to three-phase synchronous ma-
chines. The extension of these studies to single-phase machines will be left for
later. In the case of induction machines, their very principles are based on the
rotating magnetic field of polyphase currents. So it will require additional pre-
liminary.studies to explain even the possibility of single-phase operation.

13-2 PRINCIPLE OF OPERATION

The basic idea behind the induction motor is that the rotfating magnetic field
produced by a set of polyphase currents ought to be capable of producing rotat-
ing motion, without the need for a separate source of rotor excitation that char-
acterizes most synchronous motors. That this is indeed the case can be confirmed

*Nikola Tesla, 1856~1943.
+Thomas A. Edison, 1847-1931.

275



276 ELECTRIC POWER SYSTEM COMPONENTS

in several ways. The following line of reasoning is based on general principles
well known to the reader, and does not require any mathematical expressions.

Let the stator of a rotating device be cylindrical and carry three-phase wind-
ings, just like the stator of a synchronous machine. For the rotor, choose the
simplest possible design, a cylinder made of a solid material that is both ferro-
magnetic and conducting (for instance iron). When the stator windings are con-
nected to balanced three-phase voltages, they carry balanced three-phase cur-
rents and produce a magnetic field rotating at synchronous speed. The motion
of this field relative to the rotor (which may at first be thought to be stationary)
produces eddy currents and thereby causes the consumption of power (i.e., its
conversion into heat) in the rotor.

The last sentence would remain valid if the actual stator with its three-phase
excitation were replaced by a part surrounding the rotor, equipped with a wind-
ing carrying a constant current, and rotating at synchronous speed. This modi-
fied device would exhibit generator action, because the motion of the rotating
outside part (which could hardly be called a stator) would be the cause of the
power consumption in the (stationary) rotor. Consequently, the rotor would
exert a torque opposing the motion of the outside part. Now, the rotor cannot
possibly “tell” the difference, and so it responds in the same way to the rotating
field of the actual three-phase stator, namely with a torque in the direction op-
posite to the direction of the field rotation. But since the stator cannot move,
it reacts by exerting a torque of equal magnitude on the rotor, in the direction
of the rotating field.

This reasoning proves, first of all, that a device with a three-phase stator and a
solid iron rotor can operate as a motor. The reasoning remains valid for any rela-
tive motion between the rotating field and the rotor. Thus, it shows that a torque
exists in such a device regardless of whether the rotor is stationary or moving, as
long as it does not rotate at synchronous speed (at which the relative speed be-
tween field and rotor would be zero). It is typical for the induction motor that
it does not operate at synchronous speed, a property that accounts for another
name given to it, that of asynchronous motor. As for its more popular appella-
tion, it is called the induction motor because its rotor currents are due to induc-
tion rather than to some separate source of excitation, and it is the interaction
between these induced rotor currents and the magnetic field that makes the
power conversion possible.

13-3 ROTOR TYPES

The device described in the previous section (cylindrical stator with three-phase
windings, solid iron rotor) is not the normal kind of induction motor. The
weakness of that design lies in the rotor, which has to combine two functions: it
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Fig. 13-1. Squirrel cage.

is a part of the magnetic circuit, and it also carries electric currents, both within
the same piece of material. It is preferable to separate these two functions, to
use separate pieces of different materials for them. In most actual induction
motors, the cylindrical rotor core is made of ferromagnetic laminations that
minimize the flow of eddy currents, whereas separate prescribed paths, namely
conductors embedded in slots, are provided for the electric currents in the rotor.

There are two distinct types of rotor design based on this principle. Wound
rotors carry three-phase windings similar to those on the stator,i.e., sets of coils
consisting of many turns. The other construction, commonly referred to as the
squirrel cage, has individual conductors, one in each slot, connected to each
other by end rings as shown in Fig. 13-1 (they usually have more than the eight
conductors of that figure).

It does not require any detailed analysis to see that a squirrel cage is much
simpler and cheaper than a wound rotor (for similar ratings). No wonder that
the great majority of all induction machines are built with squirrel cage rotors.
There are cases, however, when it is desired to insert additional circuit elements
into the rotor circuit, for purposes of speed control and starting. Only in such
cases does the wound-rotor type become competitive and sometimes preferable.

On the other hand, when it comes to studying the operation of induction
motors, it is easier to start with the wound-rotor type. So the following theory
will be developed for a wound-rotor induction motor, and it will be shown a
little later how this theory can be applied to a squirrel-cage motor.

13-4 REMEMBER TRANSFORMERS?

Of all rotating electric machines, the wound-rotor induction motor is most
closely related to the transformer. In fact, this motor can be used as a trans-
former, with the stator winding as the primary and the rotor winding as the sec-
ondary (or the other way around). For such a use, it is only necessary that the
rotor be blocked (ie., kept from running, held stationary), and that the rotor
terminals be accessible so that they can be connected to an outside load (or
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source) circuit. The differences between such a transformer and the device
studied in Chapter S are worth noting:

(2) This motor would be a three-phase transformer since the stator and rotor
cores would serve as a magnetic circuit for all the three phases of the stator and
rotor windings. But, in contrast to the device mentioned in the last paragraph of
Section 6-5, the three stationary mmf waves would combine to form a rotating
mmf wave and thereby produce a rotating magnetic flux.

(b) It would be an inferior transformer, with imperfections far exceeding
those of a conventional power transformer. The main drawback would be the
presence of an air gap that would inevitably raise the reluctance of the magnetic
circuit and thereby the magnetizing susceptance B,,. In addition, having all
conductors located in slots would result in larger leakage reactances X; and X, .

Nevertheless, the theory of the power transformer is basic to that of the in-
duction motor. To account for the differences just mentioned, it is merely nec-
essary (@) to write all equations and draw all diagrams on a per-phase basis,
which is the normal procedure for balanced three-phase circuits in the steady
state (and also in the quasi-steady state,i.e., for slow mechanical transient condi-
tions), and (b) to limit any use of an approximate equivalent circuit to cases in
which qualitatively meaningful results rather than numerically accurate ones are
sought. (This is true because approximate equivalent circuits of transformers are
the more accurate the smaller their imperfections are.)

A transformer in the sinusoidal steady state can be described by the set of
equations 5-23, 5-24,5-31,5-32, and 5-33, which are embodied in the equivalent
circuit of Fig. 5-6. When they are applied to a wound-rotor induction motor
with a blocked rotor, the one needed modification is to set ¥, =0, since the
rotor winding must be closed in order to carry a current. (Provisions may be
made for the insertion of outside elements into the rotor circuit, as was men-
tioned above, but there is no need to consider that at this point.) So the equiva-
lent circuit diagram is redrawn in Fig. 13-2 with a short-circuited secondary. A
sharp-eyed reader might also notice that the second subscript of the admittance
Yy, has been omitted. This was done because there will be no need to transfer
this element to the secondary side.

)
—>l_22'1
L]
o +
E,

Fig. 13-2. Short-circuited transformer.
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Fig. 13-3. Induction machine at standstill.

The passive elements of this circuit, as the reader remembers, represent the im-
perfections of the transformer. Specifically, the impedances Z; and Z, are
series combinations of the winding resistances and leakage reactances. The admit-
tance Yy is a parallel combination of the core loss conductance and the magne-
tizing susceptance. All voltages and currents are phase (not line) quantities.

Regarding the ideal transformer of the diagram, its ratio of transformation is
the voltage ratio a =E,[/E,. For the static transformer with its concentrated
windings, this also equals the turns ratio N, /N,, as can be confirmed by apply-
ing Eq. 4-25 to these two voltages that are induced by the same flux. But for a
rotating machine with distributed windings, the applicable voltage equation is
the one numbered 8-40. Since the stator and rotor windings may well have dif-
ferent winding factors, the voltage ratio is

a= = (13-1)

The next step is to transfer the secondary impedance to the primary side (a
procedure first seen in Section 5-5) where it is given the symbol Z;. This makes
the voltages on both sides of the ideal transformer equal to zero; thus, it may be
omitted as trivial, which leads to the simpler equivalent circuit of Fig. 13-3 with-
out loss of accuracy. This diagram represents one phase of the induction motor
at standstill, with the actual stator voltage and current appearing at the primary
terminals.

This equivalent circuit still needs to be modified to describe a running induc-
tion motor. But first, it will be explained that this circuit can represent a motor
with a squirrel-cage rotor, as well as one with a wound rotor. The key to this ex-
planation lies in viewing a squirrel cage as a set of single-turn windings for a large
number of phases.

135 THE SQUIRREL CAGE AS A POLYPHASE WINDING

It may come as a surprise to some readers that the rotor of an induction motor
could be wound for a different number of phases than the stator. For instance,
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there could be a three-phase stator with a two-phase rotor. This is so because
they would both produce rotating mmf waves of the same direction and the
same speed (see Section 8-8), although the winding factor and the space harmon-
ics might constitute drawbacks of such a choice. On the other hand, the stator
and rotor mmf waves must have the same number of poles, so that they can
combine to form a resultant rotating mmf wave.

Can such a motor (in which the stator and the rotor have different numbers of
phases) be represented by the equivalent circuit of Fig. 13-37 The answer is yes,
but the method of transferring the rotor impedance Z, to the stator side is
somewhat different. The ratio of phase voltages expressed in Eq. 13-1 remains
valid, but the reciprocal of that ratio cannot be used to refer the rotor current to
the stator; in other words, I; # I, /a. To understand this, recall that the current
ratio of an ideal transformer is based on the cancellation of the secondary mmf
by the primary mmf. For a static single-phase transformer, this leads to N, 1; =
N,I,. Polyphase windings, on the other hand, produce rotating mmf waves
whose peak values are proportional not only to their currents, but also to their
number of phases. Thus, if a stator of m, phases and a rotor of m, phases con-
stituted an ideal transformer, with the voltage ratio a, their current ratio would
be

1

m;
b=—— 132
2 (13-2)

So the rotor current referred to the stator is

' m; 1
L=bl, =——1I -
2=bh = (13-3)
Finally, impedances are transferred from the rotor to the stator side by being
multiplied by the voltage ratio and divided by the current ratio. Thus
' a m,
Z,=—7Z,=—ad*Z 13-4
27 42 m, a4, ( )
Incidentally, Egs. 13-1, 13-3, and 13-4 are not only valid for magnitudes, but
also as complex equations (for voltage and current phasors and complex imped-
ances), since the ratios 4 and b are real numbers.
To confirm that Eqs. 13-1, 13-3, and 13-4 make Fig. 13-3 correct and mean-
ingful, compare the actual rotor voltage equation

E, =L, (135)

to the one shown by the diagram

El =Zél£=<% Zz) (b12)=aE2 (13'6)
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Fig. 13-4. Single coils for three phases.

Furthermore, the power consumption in the actual rotor resistance is correctly
shown in the diagram, since the identity

Py, =m,1} Re(Z,) =m,1;? -‘Re(zé) 137

can be readily verified by substitution of Eqs. 13-3 and 13-4.

Next, it will be shown that a squirrel cage can be viewed as a polyphase wind-
ing. Consider first a three-phase, two-pole stator facing a rotor having just six
equally spaced conductors (bars) connected to each other by metallic end rings.
This rotor could be considered as having a three-phase winding, each phase con-
sisting of just one turn (two conductors opposite to each other). The developed
sketch of Fig. 13-4 illustrates this rotor and shows the angular distance of 120°
between phases.

Similarly, if the rotor had 10 conductors instead of 6, it could be viewed as a
five-phase winding with one turn per phase. Generally, with ¢ individual rotor
conductors, one per slot, located inside a two-pole stator, the number of rotor
phases is

my, =— (138)
2
If the stator winding has more than two poles, however, the angular distance be-
tween rotor slots must be expressed in electrical units if it is to equal a phase
angle. For instance, if Fig. 13-4 is meant to represent 360 electrical degrees in a
four-pole machine, then it shows only half the circumference, and there must be
12 rather than 6 rotor conductors. Thus, for a p-pole machine, the number of
phases of a c-slot rotor is
my=2S=E (139)
p2 p
with single turns constituting the windings of each phase.

It must be understood that the number of poles of a machine is entirely deter-
mined by the stator, since the stator windings are the ones that are energized
from a (three-phase) source. The rotor carries currents only by induction (trans-
former action), and their phase differences always equal the angular distances of
their conductors in electrical units. As an example, a 36-bar squirrel cage inside
a 2-pole stator has 18 phases, but the same squirrel cage inside a 4-pole stator has
only 9 phases, etc.
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Now that the squirrel-cage rotor is viewed as a wound rotor with m, phases,
its impedance can be transferred to the three-phase stator, in accordance with
Eq. 13-4, with m; = 3 and the voltage ratio a equal to the effective number of
stator turns NV, kwl , since the number of rotor turns is unity. Thus the equiva-
lent circuit of Fig. 13-3 is valid regardless of the number of rotor phases. It
should be mentioned that the actual rotor impedance and the ratio by which it is
transferred to the stator are of interest mainly to the designer, not the analyst.
The study of the motor performance is based on the value of Z;, not Z,.

13-6 INTRODUCING THE SLIP

When the rotor of an induction machine moves, major changes take place. Since
it is the relative motion between field and rotor that is responsible for the in-
duced voltage in the rotor, this voltage must be expected to change with the
rotor speed. For a numerical expression of this speed, there is a choice between
the angular velocity c,, in mechanical radians per second, and the traditional
unit of revolutions per minute (rpm). The relation

=60 W

- (13-10)

is easily established by the facts that there are 60 seconds in a minute, and 2w
radians in a revolution. Regardless of units used, the relative speed between field
and rotor, also called the slip speed, is the difference between the synchronous
speed at which the field rotates and the actual rotor speed.

The voltage induced in a coil by the relative motion of a sinusoidally distrib-
uted magnetic field was the subject of Section 8-5, where it was shown that both
the magnitude and the frequency of this voltage are proportional to the speed of
this relative motion. Thus, the following ratios may be formed for the magni-
tude and the frequency of the voltage E, induced in each phase of the rotor
winding

E2run = Wsm ~ Wm

13-11
E3stana Ws,y, ( )
and
f2run = wsm "~ Wm (13_12)
[2stand W,y

because at standstill, w,,, =0.

On the right side of each of these two equations, the numerator is the slip
speed. Dividing it by the synchronous speed, which is a constant (i.e., not de-
pending on the operating condition of the motor), means normalizing the slip
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speed with respect to the synchronous speed. Thus, the right side of the last two
equations is the normalized slip speed, briefly known as the slip of an induction
machine.

Ws, ~Wm _Ng-n

Wy

s= (13-13)

m i

This definition is illustrated in Fig. 13-5 (by arbitrary choice, in terms of n
rather than w,,). The reader will often encounter the facts that the slip is unity
at standstill, and zero at synchronous speed.

The slip will turn out to be a most important quantity, one that characterizes
the operating condition of an induction machine in much the same way as the
torque angle & for the synchronous machine. In terms of the slip, Eqs. 13-11
and 13-12 can be rewritten in simpler form:

EZrun =5 E> stand (13-14)
and

f2run =sfzstand=sf (13'15)

where f without subscript is the stator frequency, which is the frequency of the
source or power system by which the stator is energized. Equation 13-15 intro-
duces the frequency of the voltages and currents in the rotor circuit, logically
named the slip frequency.

At this point, it is possible to demonstrate the remarkable and most significant
fact that the rotor mmf wave always rotates at synchronous speed, regardless of
the speed at which the rotor itself rotates. The reader knows from Section 8-8
that polyphase currents produce a rotating mmf wave whose speed is propor-
tional to the frequency of these currents. So, if the stator currents whose fre-
quency is f produce an mmf wave rotating at the speed ng, the rotor currents
whose frequency is sf must produce an mmf wave rotating at the speed sn;.
But that is its speed relative to the r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>